skip to main content

PENGEMBANGAN MODEL EPIDEMIK SIRA UNTUK PENYEBARAN VIRUS PADA JARINGAN KOMPUTER

*Panca Putra Pemungkas  -  Department of Mathematics, Diponegoro University, Semarang, Indonesia
Sutrisno Sutrisno  -  Department of Mathematics, Diponegoro University, Semarang, Indonesia
Sunarsih Sunarsih  -  Department of Mathematics, Diponegoro University, Semarang, Indonesia

Citation Format:
Abstract

This paper is addressed to discuss the development of epidemic model of SIRA (Susceptible-Infected-Removed-Antidotal) for virus spread analysis purposes on a computer network. We have developed the existing model by adding a possibility of antidotal computer returned to susceptible computer. Based on the results, there are two virus-free equilibrium points and one endemic equilibrium point. These equilibrium points were analyzed for stability issues using basic reproduction number and Routh-Hurwitz Method.

Fulltext View|Download

Article Metrics:

  1. Yusianto, Rindra. 2008. Virus Komputer: Teori dan Praktik. Yogyakarta: Graha Ilmu
  2. Akamai. 2013. The State of The Internet 1st Quarter. Akamai Technologies
  3. Widowati and Sutimin, 2013 Pemodelan Matematika Analisis dan Aplikasinya, Semarang: Undip Press
  4. Q. Liu, D. Jiang, N. Shi, T. Hayat. 2018. Dynamics of a Stochastics delayed SIR epidemic model with vaccination and double disaeses driven by Levy jumps. Physica A, 492
  5. Hamdan, N. I., & Kilicman, A. 2018. A fractional orde SIR epidemic model for dengue transmission. Chaos, Solitons and Fractals, 144, 55-62
  6. Eber, D., Tosin, M., Americo C. J. 2018. Calibration of a SEIR-SEI epidemic model to describe the Zika virus outbreak in Brazil. Applied Mathematics and Computation, 338, 249-259
  7. Kabli, K., El Moujaddid, S., Niri, K., & Tridane, A. 2018. Cooperative system analysis of the Ebola virus epidemic model. Infectious Disease Modelling, 3, 145–159
  8. Fatima, U., Ali, M., Ahmed, N., & Rafiq, M. (2018). Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics. Heliyon, 4(5), 00631
  9. Piqueira, J. R., & Araujo, V. O. 2009. A modified Epidemiological model for computer virus. Applied Mathematics and Computation, 213, 355-360
  10. Merkin, D.R., 1997. Introduction to the Theory of Stability. Springer. New York

Last update:

No citation recorded.

Last update:

No citation recorded.