skip to main content

IMPLEMENTASI METODE MULTINOMIAL NAÏVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN

*Eva Liyan Woro Ningrum  -  Departemen Ilmu Komputer/Informatika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Aris Puji Widodo  -  Departemen Ilmu Komputer/Informatika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

GO-JEK is an information technology-based service consisting of 3 main services, namely GO-JEK, GO-LIFE, and GO-PAY. As time goes by, customer complaints arise about the lack of satisfaction with GO-JEK services. One measure of GO-JEK customer service satisfaction can be acknowledged by way of analyzing sentiments on the data of public opinion twett submitted on the twitter official account, @gojekindonesia. In this research, sentiment analysis was carried out using the Naïve Bayes Classifier learning algorithm. The number of data twitts used is 9987. The twit data is labeled according to the class which includes positive, negative and neutral classes. Then the next process is data preprocessing consisting of cleansing, tokenization, filtering, stemming, and stopword removal. The evaluation method using 10-fold cross validation with the results obtained is precision value of 80%, recall of 80%, f1-score of 80%, maximum accuracy of 82% and average accuracy of 79%.

Fulltext View|Download

Article Metrics:

  1. Pang, Bo. & Lee, Lillian. 2008. Opinion Mining and Sentiment Analysis. Foundation and Trends in Information Retrieval, vol. 2, no 1-2, pp. 1-135.
  2. Berry, M. W., & Kogan, J. 2010. Text Mining Application and Theory. United Kingdom: John Wiley and Sons
  3. Sutojo, T. Mulyanto Edy dan Suhartono Vincent. 2011. KECERDASAN BUATAN. Yogyakarta: Andi Offset.
  4. Lisangan, Erick Alfons. 2013. Natural Language Processing Dalam Memperoleh Informasi Akademik Mahasiswa Universitas Atma Jaya Makassar. Jurnal Tematika Vol.1, No.1, ISSN: 23033878.
  5. Liu, B. 2012. Sentiment Analysis and Opinion Mining. s.l.:Morgan & Claypool Publishers
  6. Luthfi, E. T., & Kusrini. 2009. Algoritma Data Mining. Yogyakarta: ANDI.
  7. Barber, D.2012. Bayesian Reasoning and Machine Learning. United Kingdom: Cambridge University Press
  8. Manning, C. D., Raghavan, P., & Schütze, H. 2009. Introduction to Information Retrieval. Cambridge: Cambridge University Press.
  9. Verbiest, N., Vermeulen, K., dan Teredesai, A. 2015. Evaluation of Classification Methods, In Data Classification Algorithms and Applications, by Aggarwal, C.C., 633-652. New York: CRC Press

Last update:

No citation recorded.

Last update:

No citation recorded.