skip to main content

SIFAT-SIFAT RING FAKTOR YANG DILENGKAPI DERIVASI

*Iwan Ernanto  -  Departemen Matematika, Fakultas MIPA, Universitas Gadjah Mada, Indonesia

Citation Format:
Abstract

Let $R$ is a ring with unit element and $\delta$ is a derivation on $R$. An ideal $I$ of $R$ is called $\delta$-ideal if it satisfies $\delta (I)\subseteq I$. Related to the theory of ideal, we can define prime $\delta$-ideal and maximal $\delta$-ideal. The ring $R$ is called $\delta$-simple if $R$ is non-zero and the only $\delta$-ideal of $R$ are ${0}$ and $R$. In this paper, given the necessary and sufficient conditions for quotient ring $R/I$ is a $\delta$-simple where $\delta_*$ is a derivation on $R/I$ such that $\delta_* \circ \pi =\pi \circ \delta$.

Fulltext View|Download

Article Metrics:

  1. Bronstein, M., 2005, Symbolic Integration I: Transcendental Function, Springer-Verlag, New York
  2. Creedon, T., 1998, Derivations and Prime Ideals, Mathematical Proceedings of The Royal Irish Academy, 98A(2), 223-225
  3. Goodearl, K.R.; Warfield, Jr., R.B. 2004. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press: New York
  4. Hashemi, E., 2008, Prime Ideals and Strongly Prime Ideals of Skew Laurent Rings, International Journal of Mathematics and Mathematical Sciences, Vol 2008, 835605
  5. Helmi, M.R., Marubayashi, H., Ueda, A., 2013, Differential Polynomial Rings Which Are Generalized Asano prime Ring, Indian J. Pure Appl. Math., 44(5), 673-681
  6. Malik, D.S.; Moderson, J.M; Sen, M.K. 1998. Fundamental of Abstract Algebra. McGraw-Hill Company. New York

Last update:

No citation recorded.

Last update:

No citation recorded.