skip to main content

EPIDEMIC ANALYSIS, MATHEMATICAL MODELLING AND NUMERICAL SIMULATION OF COVID-19 TRANSMISSION

*Eka Triyana orcid scopus  -  Mathematics Education Study Program, Pattimura University, Ambon, Indonesia
Widowati Widowati  -  Department of Mathematics, Universitas Diponegoro, Semarang, Indonesia

Citation Format:
Abstract

This research develops a model with seven compartments SEIQDHR for the spread of COVID-19, with detected and treated individual behavior changes affecting disease transmission. The Next Generation Matrix is used to analyze local and global stability and to calculate the basic reproduction number. Then, the analysis of disease-free equilibrium and endemic equilibrium. Stability analysis shows that the equilibrium point is locally asymptotically stable when the basic reproduction number is less than one and globally asymptotically stable when it is greater than one. The results of the sensitivity analysis show that the transmission rate, the progression rate from exposure, and the detection rate are parameters that significantly influence the dynamics of disease spread. Numerical simulations were used to validate the analysis results and identify key parameters that contribute most to the spread of the disease among affected, infected, quarantined, diagnosed, and hospitalized individuals.

Fulltext View|Download
Keywords: epidemiological model; COVID-19; detected or diagnosed, sensitive analysis, stability analysis.

Article Metrics:

  1. A. S. Mata and S. M. P. Dourado, “Mathematical modeling applied to epidemics: an overview,” São Paulo Journal of Mathematical Sciences, vol. 15, no. 2, pp. 1025–1044, Dec. 2021, doi: 10.1007/s40863-021-00268-7
  2. Y. Guo et al., “Impact of public health and social measures on contact dynamics during a SARS-CoV-2 Omicron variant outbreak in Quanzhou, China, March to April 2022,” International Journal of Infectious Diseases, vol. 131, pp. 46–49, Jun. 2023, doi: 10.1016/j.ijid.2023.03.025
  3. T. S. Chillon, K. Demircan, G. Weiss, W. B. Minich, M. Schenk, and L. Schomburg, “Detection of antibodies to SARS-CoV-2 after vaccination in seminal plasma and their association to sperm parameters,” International Journal of Infectious Diseases, vol. 130, pp. 161–165, May 2023, doi: 10.1016/j.ijid.2023.03.018
  4. H. Oumarou Hama, T. Chenal, O. Pible, G. Miotello, J. Armengaud, and M. Drancourt, “An ancient coronavirus from individuals in France, circa 16th century,” International Journal of Infectious Diseases, vol. 131, pp. 7–12, Jun. 2023, doi: 10.1016/j.ijid.2023.03.019
  5. S. Zannoli et al., “SARS-CoV-2 coinfection in immunocompromised host leads to the generation of recombinant strain,” International Journal of Infectious Diseases, vol. 131, pp. 65–70, Jun. 2023, doi: 10.1016/j.ijid.2023.03.014
  6. C. Yang and J. Wang, “Transmission rates and environmental reservoirs for COVID-19 – a modeling study,” J Biol Dyn, vol. 15, no. 1, pp. 86–108, Jan. 2021, doi: 10.1080/17513758.2020.1869844
  7. V. Trivedi, K. K. Pandey, and A. Trivedi, “Application-Based Cab Services in India: Commuters’ Barriers due to COVID-19,” International Journal of Mathematical, Engineering and Management Sciences, vol. 7, no. 3, pp. 417–432, May 2022, doi: 10.33889/IJMEMS.2022.7.3.028
  8. R. Kumari, N. Gupta, and N. Kumar, “Segmentation of Covid-19 Affected X-Ray Image using K-means and DPSO Algorithm,” International Journal of Mathematical, Engineering and Management Sciences, vol. 6, no. 5, pp. 1255–1275, Oct. 2021, doi: 10.33889/IJMEMS.2021.6.5.076
  9. P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, “Detection of coronavirus Disease (COVID-19) based on Deep Features and Support Vector Machine,” International Journal of Mathematical, Engineering and Management Sciences, vol. 5, no. 4, pp. 643–651, Aug. 2020, doi: 10.33889/IJMEMS.2020.5.4.052
  10. W. S. Avusuglo, N. Bragazzi, A. Asgary, J. Orbinski, J. Wu, and J. D. Kong, “Leveraging an epidemic–economic mathematical model to assess human responses to COVID-19 policies and disease progression,” Sci Rep, vol. 13, no. 1, p. 12842, Aug. 2023, doi: 10.1038/s41598-023-39723-0
  11. K. Das, A. Annand, and M. Ram, “A Global Supply Network Design Model: A Resilient Management Approach,” International Journal of Mathematical, Engineering and Management Sciences, vol. 6, no. 2, pp. 660–676, Apr. 2021, doi: 10.33889/IJMEMS.2021.6.2.041
  12. R. Cassidy et al., “Mathematical modelling for health systems research: a systematic review of system dynamics and agent-based models,” BMC Health Serv Res, vol. 19, no. 1, p. 845, Dec. 2019, doi: 10.1186/s12913-019-4627-7
  13. Y. Liu, R. Wu, and A. Yang, “Research on Medical Problems Based on Mathematical Models,” Mathematics, vol. 11, no. 13, p. 2842, Jun. 2023, doi: 10.3390/math11132842
  14. A. El Bhih, Y. Benfatah, H. Hassouni, O. Balatif, and M. Rachik, “Mathematical modeling, sensitivity analysis, and optimal control of students awareness in mathematics education,” Partial Differential Equations in Applied Mathematics, vol. 11, p. 100795, Sep. 2024, doi: 10.1016/j.padiff.2024.100795
  15. L. D. Fernandes, A. S. Mata, W. A. C. Godoy, and C. Reigada, “Refuge distributions and landscape connectivity affect host-parasitoid dynamics: Motivations for biological control in agroecosystems,” PLoS One, vol. 17, no. 4, p. e0267037, Apr. 2022, doi: 10.1371/journal.pone.0267037
  16. D. Herrera, S. Tosetti, and R. Carelli, “Dynamic Modeling and Identification of an Agriculture Autonomous Vehicle,” IEEE Latin America Transactions, vol. 14, no. 6, pp. 2631–2637, 2016, doi: 10.1109/TLA.2016.7555230
  17. M. Pawnuk and I. Sówka, “Application of mathematical modelling in evaluation of odour nuisance from selected waste management plant,” E3S Web of Conferences, vol. 100, p. 00063, Jun. 2019, doi: 10.1051/e3sconf/201910000063
  18. Widowati, S. P. Putro, and E. Triyana, “Construction of lyapunov function using gradient method to stability analysis of the nitrogen-phosphate-phytoplankton-sediment interaction model,” J Phys Conf Ser, vol. 1524, no. 1, p. 012033, Apr. 2020, doi: 10.1088/1742-6596/1524/1/012033
  19. E. Triyana, Widowati, and S. P. Putro, “Locally stability analysis of the Phytoplankton-Nitrogen- Phosphate-Sediment dynamical system: A study case at Karimunjawa aquaculture system, Central Java,” J Phys Conf Ser, vol. 1397, no. 1, p. 012066, Dec. 2019, doi: 10.1088/1742-6596/1397/1/012066
  20. Y. Ucakan, S. Gulen, and K. Koklu, “Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models,” Math Comput Model Dyn Syst, vol. 27, no. 1, pp. 179–202, Jan. 2021, doi: 10.1080/13873954.2021.1881560
  21. A. S. Alsheri, A. A. Alraeza, and M. R. Afia, “Mathematical modeling of the effect of quarantine rate on controlling the infection of COVID19 in the population of Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 9, pp. 6843–6850, Sep. 2022, doi: 10.1016/j.aej.2021.12.033
  22. R. ud Din and E. A. Algehyne, “Mathematical analysis of COVID-19 by using SIR model with convex incidence rate,” Results Phys, vol. 23, p. 103970, Apr. 2021, doi: 10.1016/j.rinp.2021.103970
  23. P. J. Harris and B. E. J. Bodmann, “A mathematical model for simulating the spread of a disease through a country divided into geographical regions with different population densities,” J Math Biol, vol. 85, no. 4, p. 32, Oct. 2022, doi: 10.1007/s00285-022-01803-6
  24. H. A. Adekola, I. A. Adekunle, H. O. Egberongbe, S. A. Onitilo, and I. N. Abdullahi, “Mathematical modeling for infectious viral disease: The COVID‐19 perspective,” J Public Aff, Aug. 2020, doi: 10.1002/pa.2306
  25. A. S. Mata and S. M. P. Dourado, “Mathematical modeling applied to epidemics: an overview,” São Paulo Journal of Mathematical Sciences, vol. 15, no. 2, pp. 1025–1044, Dec. 2021, doi: 10.1007/s40863-021-00268-7
  26. K. Das, B. S. N. Murthy, Sk. A. Samad, and Md. H. A. Biswas, “Mathematical transmission analysis of SEIR tuberculosis disease model,” Sensors International, vol. 2, p. 100120, 2021, doi: 10.1016/j.sintl.2021.100120
  27. A. A. Thirthar, H. Abboubakar, A. Khan, and T. Abdeljawad, “Mathematical modeling of the COVID-19 epidemic with fear impact,” AIMS Mathematics, vol. 8, no. 3, pp. 6447–6465, 2023, doi: 10.3934/math.2023326
  28. A. M. Mishra, S. D. Purohit, K. M. Owolabi, and Y. D. Sharma, “A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus,” Chaos Solitons Fractals, vol. 138, p. 109953, Sep. 2020, doi: 10.1016/j.chaos.2020.109953
  29. J. M. Jonnalagadda, “Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination,” Nonautonomous Dynamical Systems, vol. 9, no. 1, pp. 1–10, Jan. 2022, doi: 10.1515/msds-2020-0143
  30. Y. Souleiman, L. Ismail, and R. Eftimie, “Modeling and investigating malaria P. Falciparum and P. Vivax infections: Application to Djibouti data,” Infect Dis Model, vol. 9, no. 4, pp. 1095–1116, Dec. 2024, doi: 10.1016/j.idm.2024.06.003
  31. M. Aakash, C. Gunasundari, S. Athithan, N. B. Sharmila, G. S. Kumar, and R. Guefaifia, “Mathematical modeling of COVID-19 with the effects of quarantine and detection,” Partial Differential Equations in Applied Mathematics, vol. 9, p. 100609, Mar. 2024, doi: 10.1016/j.padiff.2023.100609
  32. Z. S. Kifle and L. L. Obsu, “Mathematical modeling for COVID-19 transmission dynamics: A case study in Ethiopia,” Results Phys, vol. 34, p. 105191, Mar. 2022, doi: 10.1016/j.rinp.2022.105191
  33. H. van der Veen, K. Vuik, and R. de Borst, “Branch switching techniques for bifurcation in soil deformation,” Comput Methods Appl Mech Eng, vol. 190, no. 5–7, pp. 707–719, Nov. 2000, doi: 10.1016/S0045-7825(99)00439-9
  34. C. Castillo-Chavez and B. Song, “Dynamical Models of Tuberculosis and Their Applications,” Mathematical Biosciences and Engineering, vol. 1, no. 2, pp. 361–404, 2004, doi: 10.3934/mbe.2004.1.361
  35. K. G. Mekonen, T. G. Habtemicheal, and S. F. Balcha, “Modeling the effect of contaminated objects for the transmission dynamics of COVID-19 pandemic with self protection behavior changes,” Results in Applied Mathematics, vol. 9, p. 100134, Feb. 2021, doi: 10.1016/j.rinam.2020.100134
  36. Widowati, Kartono, Sutrisno, R. H. S. Utomo, and E. Triyana, “Stability Analysis and Numerical Simulation of the Transmission Dynamics of Covid-19 Infection,” Migration Letters, vol. 21, no. 4, pp. 1264–1263, Feb. 2024, [Online]. Available: https://migrationletters.com/index.php/ml/article/view/8032
  37. Widowati, Sutrisno, P. S. Sasongko, M. Brilliant, and E. Triyana, “Mathematical Modeling and Stability Analysis of the COVID-19 Spread by Considering Quarantine and Hospitalize,” Mathematical Modelling of Engineering Problems, vol. 9, no. 6, pp. 1545–1556, Dec. 2022, doi: 10.18280/mmep.090614
  38. A. Olivares and E. Staffetti, “Optimal Control Applied to Vaccination and Testing Policies for COVID-19,” Mathematics, vol. 9, no. 23, p. 3100, Dec. 2021, doi: 10.3390/math9233100

Last update:

No citation recorded.

Last update:

No citation recorded.