skip to main content

MULTINOMIAL LOGISTIC REGRESSION TO DETERMINE FACTORS INFLUENCING THE SELECTION OF HEALTH CARE FACILITIES IN INDONESIA

*Muhamad Sobari  -  Post-graduate program in Applied Statistics, Universitas Padjadjaran, Bandung, Indonesia;, Indonesia
Dian Islamiaty Putri  -  Program Studi Magister Statistika Terapan, Universitas Padjadjaran, Bandung, Indonesia
Delvi Rutania Prama  -  Program Studi Magister Statistika Terapan, Universitas Padjadjaran, Bandung, Indonesia
Yusep Suparman  -  Departemen Statistika, Universitas Padjadjaran, Bandung, Indonesia

Citation Format:
Abstract

Health facilities play a critical role in meeting the community's health needs. The existence of changes in lifestyle resulted in the community suffering from an increasing number of diseases, which increased the community's need for health facilities. There are two kinds of health facilities in Indonesia: government-owned health facilities and private health facilities. Both health facilities have advantages and disadvantages in terms of community service. As a result, Indonesians must make decisions about which health facilities to use in order to address health issues. The purpose of this research is to identify the factors that influence the selection of health facilities in Indonesia. Data from the Indonesia Family Life Survey (IFLS) 2015 were used in this study. This study uses four types of health facilities so the multinomial logistic regression method is appropriate. The findings of this study are all factors used in this study have a significant effect on the selection of health facilities. Jamkesmas ownership factors, gender, age, ability to move, and morbidity are significant on the three categories of response variables, namely public, private, and other health facilities. Askes ownership factor is significant in two categories, namely public and private health facilities. The marital status factor in the married category was significant in three categories, while divorced/widowed category was significant in two categories. While the five categories of education level factors were significant in other health facilities category.

Fulltext

Article Metrics:

  1. A. Melya, B. Asyik, and I. G. Sugiyanta, “Analisis Dan Pemetaan Sebaran Fasilitas Kesehatan di Kabupaten Lampung Barat Tahun 2015,” Energies (Basel), vol. 6, no. 1, pp. 1–8, 2018
  2. W. A. Baros, “Pemanfaatan Pelayanan Kesehatan Masyarakat Indonesia Analisa Data Susenas-Modul Kesehatan Dan Perumahan Triwulan IV Tahun 2013 Utilization of Community Health Services Indonesia Susenas Data Analysis-Module of Health and Housing, Fourth Quarter 2013,” Jurnal Kebijakan Kesehatan Indonesia, vol. 04, no. 2, p. 73, 2015
  3. F. Rabbaniyah and M. Nadjib, “Analisis Sosial Ekonomi dalam Pemanfaatan Fasilitas Kesehatan untuk Berobat Jalan di Provinsi Jawa Barat: Analisis Data Susenas Tahun 2017,” scholar.archive.org, vol. 15, no. 1, 2019, doi: 10.30597/mkmi.v15i1.5888
  4. C. Parlinggoman and W. Wibowo, “Pemodelan faktor-faktor pemilihan fasilitas kesehatan untuk berobat di Sulawesi Tenggara tahun 2012 menggunakan regresi logistik multinomial,” Jurusan Statistika, FMIPA, Institut Teknologi Sepuluh Nopember (ITS), no. 1, pp. 1–7, 2012
  5. L. Fitriani et al., “Keputusan Pemilihan Pelayanan Pengobatan Ditinjau dari Karakteristik Individu dan Aksesibilitas,” Jurnal Penelitian dan Pengembangan Kesehatan Masyarakat Indonesia, vol. 2, no. 1, pp. 67–75, 2021, doi: 10.15294/jppkmi.v2i1.47366
  6. S. Siahaan, “Faktor yang Berpengaruh terhadap Pemanfaatan Fasilitas Pelayanan Kesehatan Swasta,” Jurnal Penelitian dan Pengembangan Pelayanan Kesehatan, vol. 2, no. 2, pp. 87–94, 2018, doi: 10.22435/jpppk.v2i2.183
  7. RAND, “RAND Indonesian Family Life Survey (IFLS),” https://www.rand.org/, 2018.
  8. F. N. Rahmawati, T. Mulyaningsih, and A. Daerobi, “Pengaruh Karakteristik Rumah Tangga, Keragaman Makanan, Lingkungan Hidup terhadap Status Gizi Balita,” Media Kesehatan Masyarakat Indonesia, vol. 15, no. 4, p. 367, 2019, doi: 10.30597/mkmi.v15i4.7929
  9. M. Miranti, F. Y. Rumlawang, and F. Kondolembang, “Pemodelan Faktor - Faktor Penyebab Keparahan Korban Kecelakaan Lalu Lintas Di Kota Ambon Dengan Menggunakan Model Regresi Logistik Multinomial,” VARIANCE : Journal of Statistics and Its Applications, vol. 1, no. 1, pp. 17–26, 2019, doi: 10.30598/variancevol1iss1page17-26
  10. N. R. Draper, H. Smith, and B. Sumantri, Analisis regresi terapan. PT Gramedia Pustaka Utama, 1992
  11. A. Agresti, Categorical data analysis. John Wiley & Sons, 2003
  12. E. R. Rismia, T. Widiharih, and R. Santoso, “Klasifikasi Regresi Logistik Multinomial Dan Fuzzy K-Nearest Neighbor (Fk-Nn) Dalam Pemilihan Metode Kontrasepsi Di Kecamatan Bulakamba, Kabupaten Brebes, Jawa Tengah,” Jurnal Gaussian, vol. 10, no. 4, pp. 476–487, 2021, doi: 10.14710/j.gauss.v10i4.33095
  13. A. C. Rencher, “A review of ‘Methods of Multivariate Analysis, .’” Taylor & Francis, 2005
  14. D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression, vol. 398. John Wiley & Sons, 2013

Last update:

No citation recorded.

Last update:

No citation recorded.