skip to main content

CLUSTERING LARGE APPLICATION USING METAHEURISTICS (CLAM) FOR GROUPING DISTRICTS BASED ON PRIMARY SCHOOL DATA ON THE ISLAND OF SUMATRA

Naura Ghina As-shofa  -  Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
*Vemmie Nastiti Lestari  -  Universitas Gadjah Mada, Indonesia

Citation Format:
Abstract
K-medoids is one of the partitioning methods with the medoid as its center cluster, where medoid is the most centrally located object in a cluster, which is robust to outliers. The k-medoids algorithm used in this study is Clustering Large Application Using Metaheuristics (CLAM), where CLAM is a development of the Clustering Large Application based on Randomized Search (CLARANS) algorithm in improving the quality of cluster analysis by using hybrid metaheuristics between Tabu Search (TS) and Variable Neighborhood Search (VNS). In the case study, the best cluster analysis method for classifying sub-districts on the island of Sumatra based on elementary school availability and elementary school process standards is the CLAM method with k=6, num local = 2, max neighbor = 154, tls = 50 and set radius = 100-10:5. It can be seen that based on the overall average silhouette width value, the CLAM method is better than the CLARANS method.
Fulltext View|Download
Keywords: Clustering; CLAM; CLARANS; Tabu Search; Variable Neighborhood Search

Article Metrics:

  1. J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, USA: Elsevier Inc, 2012
  2. Y. Flowrensia, "Perbandingan Penggerombolan K-Means dan K-Medoid pada Data yang Mengandung Pencilan," FMIPA IPB, Bogor, 2010
  3. Q. H. Nguyen and V. J. Rayward-Smith, "CLAM: Clustering Large Applications Using Metaheuristics," J. Math Model Algorithm, vol. 10, pp. 57-78, 2011
  4. "Peraturan Menteri Pendidikan dan Kebudayaan Nomor 22 Tahun 2016 tentang Standar Proses pendidikan Dasar dan Menengah," Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, 2016
  5. [Online]
  6. F. Glover, "Future Paths for Integer Programming and Links to Artificial Intelligence," Computer and Operations Research, vol. 13, pp. 533-549, 1986
  7. B. Santosa and T. J. Ai, Pengantar Metaheuristik Implementasi dengan Matlab, Surabaya: ITS Tekno Sains, 2017
  8. F. Glover, M. Laguna and R. Marti, "Principle of Tabu Search," in Handbook of Approximation Algorithms and Metaheuristics, 2007
  9. F. Glover, M. Laguna and R. Marti, "Tabu Search: A Tutorial," Interfaces, vol. 20, no. 4, pp. 74-94, 2009
  10. P. Hansen, N. Mladenovic, R. Tojosijevic and S. Hanafi, "Variable Neighborhood Search," EURO Journal in Computational Optimization, vol. 5, pp. 3-35, 2016
  11. T. Ng Raymond and J. Han, "A Method for Clustering Objects for Spatial Data Mining," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1003-1016, 2002
  12. N. S. Perdana, M. Handayani and J. Purnama, "Analisis Hubungan Rombongan Belajar dan Siswa Per Rombel dengan Mutu Lulusan," Jakarta, Pusat Penelitian Kebijakan Badna Penelitian, Pengembandan dan Perbukuan Kementerian Pendidikan dan Kebudayaan, 2020
  13. "Data Pokok Pendidikan," Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, [Online]. Available: dapo.kemdikbud.go.id. [Accessed 17 May 2022]
  14. J. F. J. Hair, R. E. Anderson, B. J. Babin and W. C. Black, Multivariate Data Analysis, New York: Macmillan: Perason Education Limited, 2014
  15. K. S. Al-sultan, "A Tabu Search Approach To The Clustering Problem," Pattern Recognition, vol. 28, no. 9, pp. 143-1451, 1995
  16. L. J. Bain and M. Engelhardt, Introduction to Probability and Mathematical Statistics, California: Duxbury Press, 1992
  17. G. Brock, V. Pihur and S. Datta, "clVAlid: An R Package for Cluster Validation," Kournal of Statistical Software, vol. 25, no. 4, pp. 1-22, 2008
  18. L. Kaufman and P. J. Rousseeuw, Finding Groups in Data : An Introduction to Cluster Analysis, New Jersey: John Wiley and Sons, Inc, 1990
  19. M. H. Kutner, C. J. Nachtsheim and W. Li, Applied Linear Statistical Models, New York: Mc Graw-Hill, 2005
  20. N. Mladenovic and P. Hansen, "Variable Neighborhood Search," Computers & Operations Research, vol. 24, no. 11, pp. 1097-1100, 1997
  21. A. B. Muslim, "Analisis Klaster Menggunakan Metode CLARA pada Data yang Mengandung Pencilan," FMIPA UGM, Yogyakarta, 2018
  22. [Online]. Available: http://searchcode.com/codesearch/view/3007170/. [Accessed 24 April 2022]
  23. E. G. Talbi, Metaheuristic: From Design to Implementation, United States of America: John Wiley & Sons, Inc, 2009
  24. A. V. Gunawan, "Metode K-Medoids dengan Algoritma CLARANS pada Dataset Besar dengan Pencilan," FMIPA UGM, Yogyakarta, 2018
  25. K. D. Yulianingsih, "Analisis Klaster Menggunakan Algoritma I-CLARANS untuk Dataset Besar dengan Pencilan," FMIPA UGM, Yogyakarta, 2019

Last update:

No citation recorded.

Last update:

No citation recorded.