skip to main content

MATHEMATICAL EXPANSION OF SPECIAL THEORY OF RELATIVITY ONTO ACCELERATIONS

*Jakub Czajko orcid  -  Science/Mathematics Education Department, United States

Citation Format:
Abstract

The special theory of relativity (STR) is operationally expanded onto orthogonal accelerations: normal  and binormal  that complement the instantaneous tangential speed  and thus can be structurally extended into operationally complete 4D spacetime without defying the STR. Thus the former classic Lorentz factor, which defines proper time differential  can be expanded onto  within a trihedron moving in the Frenet frame (T,N,B). Since the tangential speed  which was formerly assumed as being always constant, expands onto effective normal and binormal speeds ensuing from the normal and binormal accelerations, the expanded formula conforms to the former Lorentz factor. The obvious though previously overlooked fact that in order to change an initial speed one must apply accelerations (or decelerations, which are reverse accelerations), made the Einstein’s STR incomplete for it did not apply to nongravitational selfpropelled motion. Like a toy car lacking accelerator pedal, the STR could drive nowhere. Yet some scientists were teaching for over 115 years that the incomplete STR is just fine by pretending that gravity should take care of the absent accelerator. But gravity could not drive cars along even surface of earth. Gravity could only pull the car down along with the physics that peddled the nonsense while suppressing attempts at its rectification. The expanded formula neither defies the STR nor the general theory of relativity (GTR) which is just radial theory of gravitation. In fact, the expanded formula complements the STR and thus it supplements the GTR too. The famous Hafele-Keating experiments virtually confirmed the validity of the expanded formula proposed here.

Fulltext View|Download
Keywords: Expanded special relativity, special-relativistic accelerations, univocal special relativity
Funding: none

Article Metrics:

  1. Kauffman S. & Smolin L. Combinatorial dynamics and time in quantum gravity. [pp.101-129 in: Kowalski-Glikman J. (Ed.) Towards quantum gravity. Berlin: Springer, 2000, p.117]
  2. DeWitt B.S. Spacetime as a sheaf of geodesics in superspace. [pp.359-374 in: Carmeli M., Fickler S.I. and Witten L. (Eds.) Relativity. New York: Plenum Press, 1970]
  3. Kar K.C. Notes on the theory of relativity. Ind. J. Theor. Phys. 17(1) (1969) 1-11
  4. Kar K.C. & Dutta C. On the theory of relativity. Ind. J. Theor. Phys. 16(1) (1968) 1-6
  5. Duhem P. The aim and structure of physical theory. Princeton, NJ: Princeton Univ. Press, 1991, p.193
  6. Zwillinger D. Handbook of differential equations. Boston: Academic Press, 1989, pp.68,69
  7. Ulam S.M. Problems in modern mathematics. First published under the title A collection of mathematical problems. New York: Wiley, 1960, p.63ff
  8. Glasko V.B. Inverse problems of mathematical physics. New York: AIP, 1988, p.8
  9. Lavrent’ev M.M., Romanov V.G. & Shishatskiῐ S.P. Ill-posed problems of mathematical physics and analysis. Providence, RI: AMS, 1986, pp.V, 2
  10. Lavrentiev M.M. Some improperly posed problems of mathematical physics. Berlin: Springer, 1967, p.2
  11. Airapetyan R.G. & Ramm A.G. Dynamical systems and discrete methods for solving nonlinear ill-posed problems. [pp.491-536 in: Annastassiou G.A. (Ed.) Applied mathematics review I. Singapore: World Scientific, 2000, see p.492 and refs. therein]
  12. Beck J.V., Blackwell B. & St. Clair C.R., Jr. Inverse heat conduction. Ill-posed problems. New York: Wiley, 1985, pp.3ff,7
  13. Czajko J. Multiplicative inversions involving real zero and neverending ascending infinity in the multispatial framework of paired dual reciprocal spaces. World Scientific News 151 (2021) 1-15 http://www.worldscientificnews.com/wp-content/uploads/2020/10/WSN-151-2021-1-15.pdf
  14. Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Scientific News 132 (2019) 98-120 http://www.worldscientificnews.com/wp-content/uploads/2019/06/WSN-132-2019-98-120.pdf
  15. Czajko J. Dual reciprocal scalar potentials paired via differential operators in Frenet frames make the operators to act simultaneously in each of two paired 3D reciprocal spaces. World Scientific News 137 (2019) 96-118
  16. http://www.worldscientificnews.com/wp-content/uploads/2019/09/WSN-137-2019-96-118.pdf
  17. Czajko J. Pairing of infinitesimal descending complex singularity with infinitely ascending, real domain singularity, World Scientific News144 (2020) 56-69
  18. Czajko J. New product differentiation rule for paired scalar reciprocal functions. World Scientific News 144 (2020) 358-371 researchgate.net/publication/340536056_New_product_differentiation_rule_for_paired_scalar_reciprocal_functions
  19. Coleman M.P. An introduction to partial differential equations with Matlab ®. Boca Raton, FL: Chapman & Hall/CRC, 2005, pp.114,403
  20. Pinsky M.A. Partial differential equations and boundary-value problems with applications. New York: McGraw-Hill, 1991, pp.166f,200,209ff,234
  21. Schey H.M. Div, grad, curl, and all that. An informal text on vector calculus. New York: Norton, 1997, p.125ff
  22. Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fractals 11 (2000) 2001-2016
  23. Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Studies in Mathematical Sciences 7(2) (2013) 25-39 http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2469/5279
  24. Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54 http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2752/5336
  25. Czajko J. On the Intrinsic Gravitational Repulsion. Chaos Solit. Fractals 19 (2004) 683-700
  26. Czajko J. Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction. World Scientific News 80 (2017) 207-238 http://www.worldscientificnews.com/wp-content/uploads/2017/07/WSN-80-2017-207-238.pdf
  27. Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105 https://www.scipress.com/ILCPA.30.89
  28. Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Applied Physics Research 3(1) (2011) 2-7 DOI: 10.5539/apr.v3n1phttp://www.ccsenet.org/journal/index.php/apr/article/viewFile/9555/7421orhttps://pdfs.semanticscholar.org/1568/4da520085028442dbd46308bfd46c0e8c195.pdf
  29. Czajko J. With Equalized Mass, its Density of Matter can Affect Radial Gravitational Interactions Too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121
  30. https://www.scipress.com/ILCPA.54.112
  31. Czajko J. Flawed fundamentals of tensor calculus. World Scientific News 149 (2020) 140-165 researchgate.net/publication/344399810_Flawed_fundamentals_of_tensor_calculus
  32. Lawrie I.D. A unified grand tour of theoretical physics. Bristol: Adam Hilger, 1990, p.43
  33. Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science 177 (4044) (1972) 166–168
  34. Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science 177 (4044) (1972) 168–170
  35. Alley C. P. Proper Time Experiments in Gravitational Fields with Atomic Clocks, Aircraft, and Laser Light Pulses. [pp. 363-427 in: Meystre P. & Scully M. O. (Eds.) Quantum Optics, Experimental Gravity, and Measurement Theory. New York: Plenum, 1983]
  36. Katti A.N. The mathematical theory of special and general relativity. North Charleston, SC: CreateSpace Independent Publishing, 2013, p.20f
  37. Hawking S. (Ed.) On the shoulders of giants. Selections from The Principle of Relativity by Albert Einstein. Philadelphia, PA: Running Press, 2002, p.35ff
  38. Hestenes D. Space-time algebra. New York: Gordon and Breach, 1966, p.74
  39. Czajko J. Unrestricted division by zero as multiplication by the – reciprocal to zero – infinity. World Scientific News 145 (2020) 180-197
  40. http://www.worldscientificnews.com/wp-content/uploads/2020/04/WSN-145-2020-180-197.pdf
  41. Fock V. The theory of space, time and gravitation. New York: Macmillan, 1964, p.42ff
  42. Freitag E. Riemannian and Lorentzian geometry. Differential geometry, Riemannian manifolds, Lorentzian manifolds, cosmology. Coppell, TX: 2020, p.80ff
  43. Czajko J. Splitting 4D spacetime into 3D space and 1D time involves operationally needed presence of two 3D spaces enclosed inside two 4D paired dual reciprocal spatial structures. World Scientific News 152 (2021) 82-110
  44. http://www.worldscientificnews.com/wp-content/uploads/2020/12/WSN-152-2021-82-110.pdf
  45. Czajko J. On the Hafele-Keating experiment. Ann. Phys. (Leipzig) 47 (1990) 517-518
  46. Czajko J. Experiments with flying atomic clocks. Exper. Tech. Phys. 39 (1991) 145-147
  47. Czajko J. On Conjugate Complex Time I: Complex Time Implies Existence of Tangential Potential that Can Cause Some Equipotential Effects of Gravity. Chaos Solit. Fractals 11 (2000) 1983-1992
  48. Rindler W. Introduction to special relativity. Oxford: Clarendon Press, 1991, p.13ff
  49. Bailey J. et al. Measurements of relativistic time dilation for positive and negative muons in a circular orbit. Nature 268 (1977) 301-305
  50. Hay H.J. et al. Measurement of the red shift in an accelerated system using the Mössbauer effect in Fe57. Phys. Rev. Lett. 4(4) (1960) 165-166
  51. Veblen O. & Whitehead J.J.C. The foundations of differential geometry. Cambridge: Cambridge Univ. Press, 1960, p.46
  52. Story T.L. Introduction to differential geometry with applications to Navier-Stokes dynamics. New York: iUniverse, 2005, p.74
  53. Graustein W.C. Differential geometry. Mineola, NY: Dover, 2006, p.38ff
  54. Gray A., Abbena E. & Salamon S. Modern differential geometry of curves and surfaces with Mathematica ®. Boca Raton, FL: Chapman & Hall/CRC, 2006, p.195ff
  55. Banchoff T. & Lovett S. Differential geometry of curves and surfaces. Natick, MA: A.K. Peters, 2010, p.68ff
  56. Sochi T. Introduction to differential geometry of space curves and surfaces. Middletown, DE, 2017, pp.47ff,110ff
  57. Stoker J.J. Differential geometry. Delhi: Chaudhury, 2014, pp.54f,100ff
  58. Guggenheimer G. W. Differential geometry. New York: Dover, 1977, pp.157ff,206ff
  59. Young E.C. Vector and tensor analysis. New York: Marcel Dekker, 1978, p.106f
  60. Kühne R.W. Cartan’s torsion: Necessity and observational evidence. [pp.37-42 in: Dvoeglazov V. & Garrido A.E. (Eds.) Relativity, gravitation, cosmology. New York: Nova Science, 2004]
  61. Doolin B.F. & Martin C.F. Introduction to differential geometry for engineers. Mineola, NY: Dover, 2012, p.23ff
  62. O’Neill B. Elementary differential geometry. San Diego: Academic Press, 1997, p.70ff
  63. Misner C.W., Thorne K.S. & Wheeler J.A. Gravitation. New York: Freeman, 1973, pp.50,51,64,393,1055
  64. Wilson P.M.H. Curved spaces. From classical geometries to elementary differential geometry. Cambridge: Cambridge Univ. Press, 2008, p.153ff
  65. McCleary J. Geometry from a differentiable viewpoint. Cambridge: Cambridge Univ. Press, 1994. p.139ff
  66. Stillwell J. Geometry of surfaces. New York: Springer, 1992, p.75ff
  67. Struik D.J. Lectures on classical differential geometry. New York: Dover, 1988, p.127ff
  68. Cartan É. Selecta. Paris : Gauthier-Villars, 1939, p.24
  69. Cartan E. Notice sur les travaux scientifiques. Paris : Gauthier-Villars, 1974, p.118
  70. Cartan E. Sur les formes differentielles en géométrie. [pp.905-907 in : Cartan E. Œuvres complètes t.1 p.2. Paris : Gauthier-Villars, 1955, see p.907]
  71. Zassenhaus H.J. Theory of groups. New York: Chelsea, 1958, p.35ff
  72. Cartan E. Le principe de dualité et la théorie des groupes simples et semi-simples. [pp.555-568 in: Cartan E. Œuvres complètes I. Paris : CNRS, 1984, see p.567]
  73. Cartan E. Le principe de dualité et certaines intégrales multiples de l’espace tangentiel et de l’espace réglé. [pp.265-302 in Cartan E. Oeuvres complètes. T.1 p.2. Paris : Gauthier-Villars, 1953]
  74. Lautman A. Symétrie at dissymétrie en mathématiques et la physique. [pp.54-65 in : Le Lionnais F. Les grands courants de la pensée mathématique. Paris : Editions des « Cahiers du Sud », 1948]
  75. Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235 https://www.scipress.com/ILCPA.36.220
  76. Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72 https://www.scipress.com/ILCPA.41.45
  77. Ord G.N. Fractal space-time: a geometric analogue of relativistic quantum mechanics. J. Phys. Math. Gen. 16 (1983) 1869-1884
  78. Geroch R. & Horowitz G.T. Global structure of spacetimes. [p.212-293 in: Hawking S.W. & Israel W. (Eds.) General relativity. An Einstein centenary survey. Cambridge: Cambridge Univ. Press, 1979, see p.243]
  79. Fujitani T., Ikeda M. & Matsumoto M. On the imbedding of the Schwarzschild space-time I. J. Math. Kyoto Univ. 1-1 (1961) 43-61
  80. Lanciani P. A model of the electron in a 6-dimensional spacetime. Found. Phys. 29(2) (1999) 251-265
  81. Bars I., Deliduman C. & Andreev O. Gauged duality, conformal symmetry, and spacetime with two times. Phys. Rev. D 58 (1998) 066004
  82. Lemos P.J. On the mathematical uniqueness of Minkowski space. Eur. J. Phys. 4 (1983) 1-2
  83. Clifford W.K. The common sense of the exact sciences. New York: Dover, 1955, pp.172, 175
  84. Sommerfeld A. Lectures on theoretical physics. I: Mechanics. New York: Academic Press, LCCCN 50-8749 (undated), p.14ff
  85. Einstein A. Die Kompatibilität der Feldgleichungen in der einheitlichen Feldtheorie. Sitz.-ber. Preuss. Ak. Wiss. 1929 pp.18-23
  86. Poincaré H. Mathematics and science. Last essays. New York: Dover, 1963, p.23
  87. Sheeter S. The unified model of the universe. Berkeley, CA: Process Press, 1980, p.47
  88. Conway A.W. The quaternionic form of relativity. Phil. Mag. 24 (1912) 208
  89. Ashtekar A. Canonical quantum gravity. [pp.189-220 in: Mann R. & Wesson P. (Eds.) Gravitation. A Banff Summer Institute. Singapore: World Scientific, 1991]
  90. Einstein A. & Infeld L. On the motion of particles in general relativity theory. Can. J. Math. 209 (1949) 1
  91. Stewart J. Calculus. Early vectors. Belmont, CA: Brooks/Cole Publishing, 1999, p.140
  92. Hatzikonstantinou P. & Moyssides P.G. Comments on a six-dimensional space-time scheme. Phys. Lett. A 140 (1989) 85-89, see p.88f
  93. Gadelha H. The beautiful spirals of sperm cells on the move. (as of July 21, 1020) https://www.sciencefriday.com/segments/sperm-3d-motion/
  94. Katz R. Axiomatic analysis: An introduction to logic and the real number system. Boston: D.C. Heath & Co., 1964, p.32ff
  95. Hintikka J. & Remes U. The method of analysis. Dordrecht: D. Reidel, 1974, p.119
  96. Panov M.I. Methodological problems of the development and application of mathematics. Moscow, 1985, p.25, [in Russian]
  97. Freytag-Löringhoff B. von. Philosophical problems of mathematics. New York: Philosophical Library, 1951, p.30
  98. Goodstein R.L. Existence in mathematics. Compos. Math. 20 (1968) 70
  99. Fang J. Mathematical existence. Philos. Math. 11 (1974) 5-8
  100. Poincaré H. Science and hypothesis. New York: Dover, 1952, p.44
  101. Janiszewski Z. Sur le réalisme et l’idéalisme en mathématiques, in: Janiszewski Z. Oeuvres choisies. Warszawa: PWN, 1962, pp. 309-317
  102. Borel E. L’imaginaire et le réel en mathématiques et en physique. Paris : Albin Michel, 1952, p.99
  103. Comte A. La synthèse subjective ou système universel des conceptions propres á l’état normal de l’humanité I. Paris, 1900, p.508
  104. Körner S. The philosophy of mathematics. An introductory essay. London: Hutchinson Univ. Library, 1968, p.58
  105. Benacerraf P. & Putnam H. (Eds.) Philosophy of mathematics. Englewood Cliffs: Prentice-Hall, 1964, p.6
  106. Beeson M. Constructivity in the nineties. [pp.127-144 in: Czermak J. (Ed.) Philosophy of mathematics I. Vienna: Verlag Hölder-Pichler-Tempsky, 1993]
  107. Jammer M. Concepts of space. The history of theories of space in physics. New York: Dover, 1993, p.173
  108. Helmholtz H. Vorlesungen über theoretische Physik I. Leipzig: Barth, 1903, p. 2
  109. Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39
  110. http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2469/5279
  111. Greenleaf F.P. Introduction to complex variables. Philadelphia: Saunders, 1972, p.105
  112. Antognini A. et al. Proton structure from the measurements of 2S-2P transition of muonic hydrogen. Science 339/6118 (2013) 417-420
  113. Margolis H.S. How big is the proton? Science 339/6118 (2013) 405-406
  114. Czajko J. Linear magnitudes estimated via energy were likely overestimated
  115. by over 3.48%. Int. Lett. Chem. Phys. Astron. 32 (2014) 32-41
  116. https://www.scipress.com/ILCPA.32.32
  117. Sternberg S. Curvature in mathematics and physics. Mineola, NY: Dover, 2012, p.79
  118. Einstein A. On the electrodynamics of moving bodies. [pp.35-65 in: Lorentz H.A. et al. (Eds.) The Principle of Relativity. New York: Dover, 1923, see p.41]
  119. Lorentz H.A. Electromagnetic phenomena … [pp.9-34 in: Lorentz H.A. et al. (Eds.) The Principle of Relativity. New York: Dover, 1923, see p.33f]

Last update:

No citation recorded.

Last update:

No citation recorded.