skip to main content

Konversi Limbah Plastik Menjadi Bahan Bakar

Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2020 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract
Pertumbuhan ekonomi saat ini sangat tergantung pada energi fosil seperti minyak bumi, gas alam, atau batubara. Ada banyak alternatif untuk pengganti energi fosil seperti biomassa, tenaga air, energi matahari dan energi angin. Selain itu aspek penting lainnya adalah strategi alternatif pengelolaan limbah. Perkembangan dan modernisasi membawa perubahan besar dalam produksi semua jenis komoditas, yang secara tidak langsung menghasilkan limbah. Plastik telah menjadi salah satu bahan untuk berbagai aplikasi karena fleksibilitas dan biaya yang relatif murah. Makalah ini menyajikan skenario konsumsi plastik saat ini dengan tujuan agar pembaca dapat melakukan analisis tentang teknik daur ulang limbah plastik padat. Daur ulang dapat dibagi ke dalam empat kategori: primer, sekunder, tersier, dan kuater. Karena nilai kalor plastik setara dengan bahan bakar fosil, maka plastik ini menjadi alternatif bahan bakar yang lebih baik. Penelitian ini bertujuan untuk membahas metode mengubah plastik menjadi bahan bakar dengan metode pirolisis, degradasi katalitik, serta gasifikasi.
Fulltext View|Download
Keywords: Limbah Plastik; Daur Ulang; Pirolisis; Degradasi Katalitik; Gasifikasi

Article Metrics:

  1. Aguado, J., Serrano, D., & Escola, J. (2008). Fuels from Waste Plastiks by Thermal and Catalytic Processes: A Review. Industrial & Engineering Chemistry Research, 47(21), 7982–7992. https://doi.org/10.1021/ie800393w
  2. Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2010). The valorization of plastik solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103–129. https://doi.org/10.1016/J.PECS.2009.09.001
  3. Buekens, A. G., & Huang, H. (1998). Catalytic plastiks cracking for recovery of gasoline-range hydrocarbons from municipal plastik wastes. Resources, Conservation and Recycling, 23(3), 163–181. https://doi.org/10.1016/S0921-3449(98)00025-1
  4. Cullis, C. F., & Hirschler, M. M. (1981). The combustion of Organic Polymers. Journal of Polymer Science: Polymer Letters Edition, 20(11), 606. https://doi.org/10.1002/pol.1982.130201115
  5. Demirbas, A. (2007). Producing Bio-oil from Olive Cake by Fast Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(1), 38–44. https://doi.org/10.1080/00908310600626747
  6. Demirbas, Ayhan. (2009). Biorefineries: Current activities and future developments. Energy Conversion and Management, 50(11), 2782–2801. https://doi.org/10.1016/J.ENCONMAN.2009.06.035
  7. Huang, W. C., Huang, M. S., Huang, C. F., Chen, C. C., & Ou, K. L. (2010). Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel, 89(9), 2305–2316. https://doi.org/10.1016/J.FUEL.2010.04.013
  8. Katyal, S. (2007). Effect of Carbonization Temperature on Combustion Reactivity of Bagasse Char. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(16), 1477–1485. https://doi.org/10.1080/00908310600710715
  9. Kpere-daibo, T. S. (2009). Plastik Catalytic Degradation Study of the role of external catalytic surface , Catalytic Reusability and Temperature Effects. In University of London (Issue April). University of London
  10. Mohan, D., Jr., C. U. P., & Steele, P. H. (2006). Pyrolysis of Wood/Biomas. Energy Fuels, 20(3), 848–883. https://doi.org/10.1021/ef0502397
  11. Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastiks to liquid fuel: A suitable method for plastik waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233–248. https://doi.org/10.1016/J.RSER.2009.07.005
  12. Singh, B., & Sharma, N. (2008). Mechanistic implications of plastik degradation. Polymer Degradation and Stability, 93(3), 561–584. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2007.11.008
  13. Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., & Kothari, R. (2011). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797–4808. https://doi.org/10.1016/J.RSER.2011.07.071
  14. Wei, T. T., Wu, K. J., Lee, S. L., & Lin, Y. H. (2010). Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels. Resources, Conservation and Recycling, 54(11), 952–961. https://doi.org/10.1016/J.RESCONREC.2010.02.002
  15. Yoshioka, T., & Grause, G. (2006). Feedstock Recycling of PET. In J. Scheirs & W. Kaminsky (Eds.), Feedstock Recycling and Pyrolysis of Waste Plastiks: Converting Waste Plastiks into Diesel and Other Fuels (1st ed., pp. 641–661). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470021543.ch25
  16. Zhang, G. H., Zhu, J. F., & Okuwaki, A. (2007). Prospect and current status of recycling waste plastiks and technology for converting them into oil in China. Resources, Conservation and Recycling, 50(3), 231–239. https://doi.org/10.1016/J.RESCONREC.2006.11.007

Last update:

No citation recorded.

Last update:

No citation recorded.