skip to main content

Perbandingan Material Superkapasitor Berbasis Karbon dan Oksida Logam untuk Optimalisasi Penyimpanan Energi dalam Aplikasi Sistem Energi Terbarukan: Systematic Literature Review

Electrical Engineering, Universitas Negeri Semarang, Sekaran, Kec. Gn. Pati, Kota Semarang, Jawa Tengah 50229, Indonesia

Open Access Copyright (c) 2024 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Kebutuhan akan solusi penyimpanan energi yang efisien dan berkelanjutan semakin meningkat seiring dengan perkembangan sistem energi terbarukan. Superkapasitor, yang dikenal karena kepadatan daya dan stabilitas siklusnya, menjadi komponen penting dalam teknologi ini. Kajian literatur ini bertujuan membandingkan material berbasis karbon dan oksida logam pada superkapasitor, dengan fokus pada optimalisasi performa penyimpanan energi. Melalui pendekatan sistematis, kajian ini menelaah karakteristik utama dari kedua jenis material, termasuk densitas energi, daya tahan siklus, kestabilan termal, dan potensi biaya. Hasil review menunjukkan bahwa material berbasis karbon cenderung memiliki keunggulan pada kepadatan daya dan siklus hidup, sementara oksida logam menawarkan kapasitas penyimpanan yang lebih tinggi tetapi rentan terhadap degradasi. Analisis ini memberikan wawasan mengenai kelebihan dan batasan tiap material, yang dapat menjadi panduan dalam pemilihan material superkapasitor untuk aplikasi pada energi terbarukan. Kajian ini diharapkan dapat mendukung pengembangan superkapasitor yang lebih efisien dan berkelanjutan.
Fulltext View|Download
Keywords: Superkapasitor, material berbasis karbon, oksida logam, penyimpanan energi, energi terbarukan

Article Metrics:

  1. A. G. Olabi, Q. Abbas, A. Al Makky, and M. A. Abdelkareem, “Supercapacitors as next generation energy storage devices: Properties and applications,” Energy, vol. 248, Jun. 2022, doi: 10.1016/j.energy.2022.123617
  2. S. Satpathy, A. Padthe, M. Prakash, M. Chandra Trivedi, V. Goyal, and B. K. Bhattacharyya, “Method for measuring supercapacitor’s fundamental inherent parameters using its own self-discharge behavior: A new steps towards sustainable energy,” Sustainable Energy Technologies and Assessments, vol. 53, Oct. 2022, doi: 10.1016/j.seta.2022.102760
  3. P. G. Papageorgiou, A. M. Tsakiri, and G. C. Christoforidis, “Performance assessment of supercapacitor energy storage integration into a renewable DC microgrid,” in 2022 2nd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), IEEE, Oct. 2022, pp. 1–6. doi: 10.1109/SyNERGYMED55767.2022.9941460
  4. Q. He et al., “Supercapacitor-isolated water electrolysis for renewable energy storage,” Chemical Engineering Journal, vol. 495, p. 153461, Sep. 2024, doi: 10.1016/j.cej.2024.153461
  5. M. F. Elmorshedy, M. R. Elkadeem, K. M. Kotb, I. B. M. Taha, and D. Mazzeo, “Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors,” Energy Convers Manag, vol. 245, p. 114584, Oct. 2021, doi: 10.1016/j.enconman.2021.114584
  6. K. M. Moloelang, P. F. Le Roux, B. T. Abe, A. F. Nnachi, and T. P. Ratau, “Modeling and Analysis of a Battery-Supercapacitor Hybrid Energy Storage System (HESS) for Renewable Energy Applications,” in 2023 6th International Conference on Renewable Energy and Power Engineering (REPE), IEEE, Sep. 2023, pp. 293–299. doi: 10.1109/REPE59476.2023.10511902
  7. A. Fatih Guven, A. Y. Abdelaziz, M. Mahmoud Samy, and S. Barakat, “Optimizing energy Dynamics: A comprehensive analysis of hybrid energy storage systems integrating battery banks and supercapacitors,” Energy Convers Manag, vol. 312, Jul. 2024, doi: 10.1016/j.enconman.2024.118560
  8. S. M. Benoy, M. Pandey, D. Bhattacharjya, and B. K. Saikia, “Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials,” J Energy Storage, vol. 52, p. 104938, Aug. 2022, doi: 10.1016/j.est.2022.104938
  9. K. Dissanayake and D. Kularatna-Abeywardana, “A review of supercapacitors: Materials, technology, challenges, and renewable energy applications,” J Energy Storage, vol. 96, p. 112563, Aug. 2024, doi: 10.1016/j.est.2024.112563
  10. S. Mei, J. Zheng, and W. Chu, “Designing porous carbon-based multicomponent electrode material for high performance supercapacitor,” J Energy Storage, vol. 40, Aug. 2021, doi: 10.1016/j.est.2021.102698
  11. P. C. Himadri Reddy, J. Amalraj, S. Ranganatha, S. S. Patil, and S. Chandrasekaran, “A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors,” Synth Met, vol. 298, Sep. 2023, doi: 10.1016/j.synthmet.2023.117447
  12. B. Liu, M. Yang, H. Chen, Y. Liu, D. Yang, and H. Li, “Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors,” J Power Sources, vol. 397, pp. 1–10, Sep. 2018, doi: 10.1016/j.jpowsour.2018.06.100
  13. Z. Zhai et al., “A review of carbon materials for supercapacitors,” Sep. 01, 2022, Elsevier Ltd. doi: 10.1016/j.matdes.2022.111017
  14. T. Yue, B. Shen, and P. Gao, “Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review,” Apr. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2022.112131
  15. N. P. D. Ngidi, A. F. Koekemoer, and S. S. Ndlela, “Application of metal oxide/porous carbon nanocomposites in electrochemical capacitors: A review,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 135, p. 103698, Oct. 2024, doi: 10.1016/j.pce.2024.103698
  16. M. G. Joysi et al., “Exploring ternary metal oxides MnO2/CuO/ZrO2 composites for supercapacitor applications,” Results Chem, vol. 10, Aug. 2024, doi: 10.1016/j.rechem.2024.101682
  17. P. Sinha and K. K. Kar, “A flexible and high energy density -hydrous RuO2 and keratin-derived renewable carbon composite-based asymmetric supercapacitor in redox-mediated electrolytes,” Electrochim Acta, vol. 435, p. 141368, Dec. 2022, doi: 10.1016/j.electacta.2022.141368
  18. C. T. Sarr, M. B. Camara, and B. Dakyo, “Supercapacitors aging assessment in wind/tidal intermittent energies application with variable temperature,” J Energy Storage, vol. 46, p. 103790, Feb. 2022, doi: 10.1016/j.est.2021.103790
  19. Lichchhavi, A. Kanwade, and P. M. Shirage, “A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes,” Nov. 25, 2022, Elsevier Ltd. doi: 10.1016/j.est.2022.105692
  20. A. Cano, P. Arévalo, D. Benavides, and F. Jurado, “Comparative analysis of HESS (battery/supercapacitor) for power smoothing of PV/HKT, simulation and experimental analysis,” J Power Sources, vol. 549, Nov. 2022, doi: 10.1016/j.jpowsour.2022.232137
  21. B. K. Saikia, S. M. Benoy, M. Bora, J. Tamuly, M. Pandey, and D. Bhattacharya, “A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials,” Fuel, vol. 282, p. 118796, Dec. 2020, doi: 10.1016/j.fuel.2020.118796
  22. A. Younes, Z. E. A. Elassad, O. El Meslouhi, D. E. A. Elassad, and E. Abdel Majid, “The application of machine learning techniques for smart irrigation systems: A systematic literature review,” Smart Agricultural Technology, vol. 7, p. 100425, Mar. 2024, doi: 10.1016/j.atech.2024.100425
  23. W. Yang et al., “Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors,” Carbon N Y, vol. 130, pp. 325–332, Apr. 2018, doi: 10.1016/j.carbon.2018.01.032
  24. S. Palsaniya and A. K. Dasmahapatra, “Graphene Supercapacitor Electrode of Liquid Hydrocarbons using CVD Process,” in 2022 International Conference for Advancement in Technology, ICONAT 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ICONAT53423.2022.9725983
  25. T. Méndez-Morales, N. Ganfoud, Z. Li, M. Haefele, B. Rotenberg, and M. Salanne, “Performance of microporous carbon electrodes for supercapacitors: Comparing graphene with disordered materials,” Energy Storage Mater, vol. 17, pp. 88–92, Feb. 2019, doi: 10.1016/j.ensm.2018.11.022
  26. H. Lin et al., “Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode,” J Energy Storage, vol. 53, Sep. 2022, doi: 10.1016/j.est.2022.105036
  27. H. Wang et al., “High-performance, flexible, all-solid-state, asymmetric supercapacitors from recycled resin-based activated carbon, MnO2, and waste nonwoven materials,” J Energy Storage, vol. 84, Apr. 2024, doi: 10.1016/j.est.2024.110960
  28. M. Imtiaz et al., “Fabrication of cerium vanadate-embedded on carbon based graphene material (rGO) with significant performance for supercapacitor electrode,” J Energy Storage, vol. 101, Nov. 2024, doi: 10.1016/j.est.2024.113987
  29. E. Adhamash et al., “High-energy plasma activation of renewable carbon for enhanced capacitive performance of supercapacitor electrode,” Electrochim Acta, vol. 362, p. 137148, Dec. 2020, doi: 10.1016/j.electacta.2020.137148
  30. A. Nandagudi et al., “Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications,” Nov. 01, 2022, Elsevier Ltd. doi: 10.1016/j.mtsust.2022.100214
  31. Y. Liu, X. Xu, Z. Shao, and S. P. Jiang, “Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application,” Energy Storage Mater, vol. 26, pp. 1–22, Apr. 2020, doi: 10.1016/j.ensm.2019.12.019
  32. G. Duan et al., “Bamboo-templated MOF-67-derived carbon: A high-performance electrode for supercapacitors,” Ind Crops Prod, vol. 222, Dec. 2024, doi: 10.1016/j.indcrop.2024.119616
  33. C. Rong, C. Liao, Y. Chen, and X. Zheng, “High-performance supercapacitor electrode materials from composite of bamboo tar pitch activated carbon and tannic acid carbon quantum dots,” J Energy Storage, vol. 95, Aug. 2024, doi: 10.1016/j.est.2024.112657
  34. P. Liang et al., “Rational fabrication of semi-interpenetrating three-dimensional hierarchical carbon materials for high-performance symmetric supercapacitor,” J Energy Storage, vol. 97, Sep. 2024, doi: 10.1016/j.est.2024.112823
  35. C. Mevada, J. Tissari, V. S. Parihar, A. Tewari, J. Keskinen, and M. Mäntysalo, “Bio-inspired 3D-Printed supercapacitors for sustainable energy storage,” J Power Sources, vol. 624, Dec. 2024, doi: 10.1016/j.jpowsour.2024.235529
  36. S. R. Mangishetti, M. Kamaraj, and R. Sundara, “Novel favorably interconnected N-doped porous carbon hybrid electrode materials for high energy density supercapacitors,” Int J Hydrogen Energy, vol. 48, no. 86, pp. 33442–33455, Oct. 2023, doi: 10.1016/j.ijhydene.2023.05.112
  37. M. Mandal et al., “In-situ synthesis of mixed-phase carbon material using simple pyrolysis method for high-performance supercapacitor,” Diam Relat Mater, vol. 127, Aug. 2022, doi: 10.1016/j.diamond.2022.109209
  38. H. Li, T. Du, Q. Wang, J. Guo, S. Zhang, and Y. Lu, “A new synthesis of O/N-doped porous carbon material for supercapacitors,” J Energy Storage, vol. 66, Aug. 2023, doi: 10.1016/j.est.2023.107397
  39. Y. Li et al., “Effect of puffing on electrochemical properties of sorghum seed based porous carbon materials in supercapacitors,” J Energy Storage, vol. 102, Nov. 2024, doi: 10.1016/j.est.2024.114065
  40. Z. Wu, C. Guo, Z. Lu, C. Yuan, Y. Xu, and L. Dai, “A facile brushing method for constructing all-in-one high performance flexible supercapacitor with ordinary carbon materials,” J Energy Storage, vol. 67, Sep. 2023, doi: 10.1016/j.est.2023.107531
  41. S. Goswami et al., “Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications,” Electrochim Acta, vol. 316, pp. 202–218, Sep. 2019, doi: 10.1016/j.electacta.2019.05.133
  42. Y. Zhang et al., “Facile synthesis of honeycomb-like porous carbon materials derived from reed straw and tannic acid towards high-performance supercapacitors,” J Energy Storage, vol. 98, Sep. 2024, doi: 10.1016/j.est.2024.113054
  43. S. A. Adewinbi et al., “Characterization of two-way fabricated hybrid metal-oxide nanostructured electrode materials for photovoltaic and miniaturized supercapacitor applications,” Solid State Sci, vol. 119, Sep. 2021, doi: 10.1016/j.solidstatesciences.2021.106699
  44. B. Talluri, M. L. Aparna, N. Sreenivasulu, S. S. Bhattacharya, and T. Thomas, “High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material,” J Energy Storage, vol. 42, Oct. 2021, doi: 10.1016/j.est.2021.103004
  45. M. Mustaqeem et al., “Rational design of metal oxide based electrode materials for high performance supercapacitors – A review,” J Energy Storage, vol. 55, Nov. 2022, doi: 10.1016/j.est.2022.105419
  46. P. Bajpai, A. Kumar, N. S. Neeraj, K. Agarwal, and A. Kumar Srivastava, “Effect of variation of metals in quaternary metal oxide based electrodes on carbon fiber for super capacitor application,” Materials Science and Engineering: B, vol. 290, p. 116350, Apr. 2023, doi: 10.1016/j.mseb.2023.116350
  47. C. Zhao et al., “Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors,” Chemical Engineering Journal, vol. 497, p. 154535, Oct. 2024, doi: 10.1016/j.cej.2024.154535
  48. R. Liu et al., “Fundamentals, advances and challenges of transition metal compounds-based supercapacitors,” Chemical Engineering Journal, vol. 412, p. 128611, May 2021, doi: 10.1016/j.cej.2021.128611
  49. P. Gaikwad, N. Tiwari, R. Kamat, S. M. Mane, and S. B. Kulkarni, “A comprehensive review on the progress of transition metal oxides materials as a supercapacitor electrode,” Materials Science and Engineering: B, vol. 307, p. 117544, Sep. 2024, doi: 10.1016/j.mseb.2024.117544
  50. S. Xiao et al., “High-performance aqueous potassium ion asymmetric supercapacitors based on tunable 2D transition metal oxides,” J Power Sources, vol. 551, Dec. 2022, doi: 10.1016/j.jpowsour.2022.232201
  51. J. Li et al., “Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors,” Nano Energy, vol. 57, pp. 22–33, Mar. 2019, doi: 10.1016/j.nanoen.2018.12.011
  52. A. Morandi et al., “Characterization and Model Parameters of Large Commercial Supercapacitor Cells,” IEEE Access, vol. 9, pp. 20376–20390, 2021, doi: 10.1109/ACCESS.2021.3053626

Last update:

No citation recorded.

Last update:

No citation recorded.