skip to main content

Simulation of an On-grid Wind-Hydrogen Coupling System (Case Study: Mollo Selatan Subdistrict, Indonesia)

1School of Renewable Energy and Clean Energy, North China Electric Power University, Indonesia

2School of Renewable Energy and Clean Energy, North China Electric Power University, China

Open Access Copyright (c) 2022 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract

This study proposed a wind-hydrogen coupling systems control strategy to investigate its feasibility. The control strategy regulates the electrical energy generated by a wind turbine to meet the domestic load demand of a specific site. The remaining electrical energy is regulated to supply electrolyzer for producing hydrogen as energy storage. The stored energy in the form of hydrogen can be reconverted into electricity by utilizing fuel cells to meet the domestic load demand. Selecting proper sites for evaluating the control strategy is critical. Hence this study also conducts a wind resource assessment approach that considers the humidity effect to wind power density, wind turbine power curve, and annual energy production of a wind turbine. This approach achieved a better precise annual energy production estimation than other approaches that neglect the humidity. Proper wind resource assessment resulted in a site for the case study, Mollo Selatan Subdistrict for an on-grid system. The control strategy was modeled and evaluated with MATLAB Simulink. The simulation results show the possibility of storing energy generated by the wind into hydrogen and meeting the load demand of the case study location.

Fulltext View|Download
Keywords: Wind resource assessment; moist air density; wind hydrogen couple system; control strategy

Article Metrics:

  1. A/S, E. I. (n.d.). Indonesia Wind Prospecting. Retrieved January 26, 2021, from indonesia.windprospecting.com
  2. Aeolos. (n.d.). Aeolos-H 50kW Wind Turbine. Retrieved August 20, 2021, from http://www.windturbinestar.com/50kwh-aeolos-wind-turbine.html
  3. Aghbalou, N., Charki, A., Elazzouzi, S. R., & Reklaoui, K. (2018). A probabilistic assessment approach for wind turbine-site matching. International Journal of Electrical Power and Energy Systems, 103(November 2017), 497–510. https://doi.org/10.1016/j.ijepes.2018.06.018
  4. Akorede, M. F., Mohd Rashid, M. I., Sulaiman, M. H., Mohamed, N. B., & Ab Ghani, S. B. (2013). Appraising the viability of wind energy conversion system in the Peninsular Malaysia. Energy Conversion and Management, 76(2013), 801–810. https://doi.org/10.1016/j.enconman.2013.08.018
  5. Al Mubarok, A. G. (2022). Simulation of Hydrogen Production as Energy Storage by Wind Power Generation (Case Study: Remote Areas of Indonesia). North China Electric Power University
  6. BPS. (2020). Mollo Selatan Subdistrict by Figure
  7. Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind Energy Handbook. New York: John Wiley & Sons
  8. Chang, T. P. (2011). Estimation of wind energy potential using different probability density functions. Applied Energy, 88(5), 1848–1856. https://doi.org/10.1016/j.apenergy.2010.11.010
  9. Direktorat Jenderal Kelistrikan Kementerian ESDM. (2020). Bahan ditjen ketenagalistrikan Konferensi Pers Capaian Kinerja Subsektor Ketenagalistrikan. 21
  10. Engineering Toolbox. (2004). Water Vapor and Saturation Pressure in Humid Air. Retrieved from https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-air-d_689.html
  11. Gahleitner, G. (2013). Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 38(5), 2039–2061. https://doi.org/10.1016/j.ijhydene.2012.12.010
  12. Georgantopoulou, C. G., & Georgantopoulos, G. A. (2018). International Standard Atmosphere, in BS. Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2, 251–258. https://doi.org/10.1002/9781119457008.app5
  13. Hrafnkelsson, B., Oddsson, G. V., & Unnthorsson, R. (2016). A method for estimating annual energy production using Monte Carlo wind speed simulation. Energies, 9(4), 1–14. https://doi.org/10.3390/en9040286
  14. Hu, S. yuan, & Cheng, J. ho. (2007). Performance evaluation of pairing between sites and wind turbines. Renewable Energy, 32(11), 1934–1947. https://doi.org/10.1016/j.renene.2006.07.003
  15. Huang, S. J., & Wan, H. H. (2012). Determination of suitability between wind turbine generators and sites including power density and capacity factor considerations. IEEE Transactions on Sustainable Energy, 3(3), 390–397. https://doi.org/10.1109/TSTE.2012.2186643
  16. Hydrogenics. (2011). HyPM Fuel Cell Power Modules. Datasheet
  17. IEA, IRENA, UNSD, WB, & WHO. (2019). Tracking SDG 7: The Energy Progress Report. 1–176
  18. IRENA. (2019). Hydrogen: a Renewable Energy Perspective. In International Renewable Energy Agency. Retrieved from www.irena.org
  19. Jangamshetti, S. H., & Rau, V. G. (1999). Site matching of wind turbine generators: a case study. IEEE Transactions on Energy Conversion, 14(4), 1537–1543. https://doi.org/10.1109/60.815102
  20. Kementerian ESDM. (2020). Capaian Kinerja 2019 dan Program 2020. 16. Retrieved from https://www.esdm.go.id/assets/media/content/content-capaian-kinerja-2019-dan-program-2020.pdf
  21. Labtech. (n.d.). Hydrogen Storage Containers on the Base of LaNi5 -type Metal Hydrides. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj_9uu648n2AhUm5nMBHU4OBBMQFnoECAQQAQ&url=http%3A%2F%2Fwww.labtech-hydrogen.com%2Fcommon_files%2Fbrochure.pdf&usg=AOvVaw1NURfIXdSpQ_p5XabW6kuA
  22. Martosaputro, S., & Murti, N. (2014). Blowing the wind energy in Indonesia. Energy Procedia, 47, 273–282. https://doi.org/10.1016/j.egypro.2014.01.225
  23. Mathew, S. (2007). Wind energy: Fundamentals, resource analysis and economics. In Wind Energy: Fundamentals, Resource Analysis and Economics. https://doi.org/10.1007/3-540-30906-3
  24. Nel Hydrogen. (2020). The World’s Most Efficient and Reliable Electrolysers. Nel Hydrogen, 16. Retrieved from https://nelhydrogen.com/wp-content/uploads/2020/03/Electrolysers-Brochure-Rev-C.pdf
  25. Parajuli, A. (2016). A Statistical Analysis of Wind Speed and Power Density Based on Weibull and Rayleigh Models of Jumla, Nepal. Energy and Power Engineering, 08(07), 271–282. https://doi.org/10.4236/epe.2016.87026
  26. Saxena, B. K., & Rao, K. V. S. (2016). Estimation of Wind Power Density at a Wind Farm Site Located in Western Rajasthan Region of India. Procedia Technology, 24, 492–498. https://doi.org/10.1016/j.protcy.2016.05.084
  27. Sohoni, V., Gupta, S. C., & Nema, R. K. (2016). A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their Applications in Wind Based Energy Systems. Journal of Energy, 2016(region 4), 1–18. https://doi.org/10.1155/2016/8519785
  28. Song, D., Zheng, S., Yang, S., Yang, J., Dong, M., Su, M., & Joo, Y. H. (2021). Annual Energy Production Estimation for Variable-speed Wind Turbine at High-altitude Site. Journal of Modern Power Systems and Clean Energy, 9(3), 684–687. https://doi.org/10.35833/MPCE.2019.000240
  29. Toolbox, E. (2003). Specific Volume of Moist Air. Retrieved August 8, 2021, from http://www.engineeringtoolbox.com/moist-air-specific-volume-d_25.html
  30. Vaisala. (2013). Humidity Conversion Formulas - Calculation formulas for humidity. Humidity Conversion Formulas, 16. Retrieved from https://www.vaisala.com/sites/default/files/documents/Humidity_Conversion_Formulas_B210973EN-F.pdf
  31. Vestfálová, M., & Šafařík, P. (2018). Determination of the applicability limits of the ideal gas model for the calculation of moist air properties. EPJ Web of Conferences, 180, 1–7. https://doi.org/10.1051/epjconf/201817002115
  32. Wagner, H.-J., & Mathur, J. (2018). Introduction to Wind Energy Systems. In EPJ Web of Conferences. https://doi.org/10.1007/978-3-319-68804-6
  33. Widera, B. (2019). Renewable hydrogen as an energy storage solution. E3S Web of Conferences, 116. https://doi.org/10.1051/e3sconf/201911600097
  34. Yang, H. X., Lu, L., & Burnett, J. (2003). Weather data and probability analysis of hybrid photovoltaic-wind power generation systems in Hong Kong. Renewable Energy, 28(11), 1813–1824. https://doi.org/10.1016/S0960-1481(03)00015-6
  35. Yeh, T. H., & Wang, L. (2008). A study on generator capacity for wind turbines under various tower heights and rated wind speeds using Weibull distribution. IEEE Transactions on Energy Conversion, 23(2), 592–602. https://doi.org/10.1109/TEC.2008.918626
  36. Zoulias, E., & Varkaraki, E. (2004). A review on water electrolysis. Tcjst, 4(2), 41–71. Retrieved from http://large.stanford.edu/courses/2012/ph240/jorna1/docs/zoulias.pdf

Last update:

No citation recorded.

Last update:

No citation recorded.