skip to main content

Tinjauan Metode Penangkapan Karbon untuk PLTU Batubara

Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2021 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract

Sektor energi adalah kontributor utama dalam emisi karbon di Indonesia. Dengan meningkatnya kebutuhan energi, maka emisi karbon dari sektor ini juga meningkat tiap tahunnya. Sampai tahun 2023 akan ada lebih dari 15 GW PLTU Batubara baru yang mulai beroperasi. Lambatnya perkembangan energi bersih yang ekonomis membuat Indonesia harus mulai mempertimbangkan teknologi lain untuk menurunkan emisi karbon. Salah satu yang layak dipertimbangkan adalah teknologi penangkapan karbon. Penelitian ini mengulas metode – metode penangkapan karbon yang ada juga kelebihan dan kekurangannya. Metode penangkapan paska pembakaran dianggap layak untuk dipertimbangkan karena lebih mudah diterapkan pada pembangkit yang sudah ada. Penelitian lebih jauh diperlukan untuk menurunkan kebutuhan energi dan biaya dari teknologi penangkapan karbon.

Fulltext View|Download
Keywords: Emisi Karbon; Batubara; Penangkapan Karbon

Article Metrics:

  1. Babar, M., Bustam, M. A., Ali, A., Shah Maulud, A., Shafiq, U., Mukhtar, A., Shah, S. N., Maqsood, K., Mellon, N., & Shariff, A. M. (2019). Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics, 102(March), 85–104. https://doi.org/10.1016/j.cryogenics.2019.07.004
  2. Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., Laoui, T., & Ali, M. (2016). Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Applied Energy, 161, 225–255. https://doi.org/10.1016/j.apenergy.2015.10.011
  3. Cifre, P. G., Brechtel, K., Hoch, S., García, H., Asprion, N., Hasse, H., & Scheffknecht, G. (2009). Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber. Fuel, 88(12), 2481–2488. https://doi.org/10.1016/j.fuel.2009.01.031
  4. Edge, P., Gharebaghi, M., Irons, R., Porter, R., Porter, R. T. J., Pourkashanian, M., Smith, D., Stephenson, P., & Williams, A. (2011). Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chemical Engineering Research and Design, 89(9), 1470–1493. https://doi.org/10.1016/j.cherd.2010.11.010
  5. Elias, R. S., Wahab, M. I. M., & Fang, L. (2018). Retrofitting carbon capture and storage to natural gas-fired power plants: A real-options approach. Journal of Cleaner Production, 192, 722–734. https://doi.org/10.1016/j.jclepro.2018.05.019
  6. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2(1), 9–20. https://doi.org/10.1016/S1750-5836(07)00094-1
  7. Jansen, D., Gazzani, M., Manzolini, G., Dijk, E. Van, & Carbo, M. (2015). Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 40, 167–187. https://doi.org/10.1016/j.ijggc.2015.05.028
  8. Lively, R. P., Koros, W. J., & Johnson, J. R. (2012). Enhanced cryogenic CO 2 capture using dynamically operated low-cost fiber beds. Chemical Engineering Science, 71, 97–103. https://doi.org/10.1016/j.ces.2011.11.042
  9. Lockwood, T. (2017). A Compararitive Review of Next-generation Carbon Capture Technologies for Coal-fired Power Plant. Energy Procedia, 114(November 2016), 2658–2670. https://doi.org/10.1016/j.egypro.2017.03.1850
  10. Low, B. T., Zhao, L., Merkel, T. C., Weber, M., & Stolten, D. (2013). A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. Journal of Membrane Science, 431, 139–155. https://doi.org/10.1016/j.memsci.2012.12.014
  11. Merkel, T. C., Lin, H., Wei, X., & Baker, R. (2010). Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 359(1–2), 126–139. https://doi.org/10.1016/j.memsci.2009.10.041
  12. Ramasubramanian, K., & Ho, W. S. W. (2011). Recent developments on membranes for post-combustion carbon capture. Current Opinion in Chemical Engineering, 1(1), 47–54. https://doi.org/10.1016/j.coche.2011.08.002
  13. Roeder, V., & Kather, A. (2014). Part load behaviour of power plants with a retrofitted post-combustion CO2 capture process. Energy Procedia, 51, 207–216. https://doi.org/10.1016/j.egypro.2014.07.024
  14. RUPTL PT. PLN. (2019). Rencana usaha penyediaan tenaga listrik pt. pln (persero) 2019 - 2028. 2019–2028
  15. Sifat, N. S., & Haseli, Y. (2019). A critical review of CO2 capture technologies and prospects for clean power generation. Energies, 12(21). https://doi.org/10.3390/en12214143
  16. Stanger, R., Wall, T., Spörl, R., Paneru, M., Grathwohl, S., Weidmann, M., Scheffknecht, G., McDonald, D., Myöhänen, K., Ritvanen, J., Rahiala, S., Hyppänen, T., Mletzko, J., Kather, A., & Santos, S. (2015). Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 40, 55–125. https://doi.org/10.1016/j.ijggc.2015.06.010
  17. Thiruvenkatachari, R., Su, S., An, H., & Yu, X. X. (2009). Post combustion CO2 capture by carbon fibre monolithic adsorbents. Progress in Energy and Combustion Science, 35(5), 438–455. https://doi.org/10.1016/j.pecs.2009.05.003
  18. Wang, Y., Zhao, L., Otto, A., Robinius, M., & Stolten, D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 114(November 2016), 650–665. https://doi.org/10.1016/j.egypro.2017.03.1209
  19. Ye, B., Jiang, J., Zhou, Y., Liu, J., & Wang, K. (2019). Technical and economic analysis of amine-based carbon capture and sequestration at coal-fired power plants. Journal of Cleaner Production, 222, 476–487. https://doi.org/10.1016/j.jclepro.2019.03.050
  20. Yuan, P., Qiu, Z., & Liu, J. (2017). Recent enlightening strategies for co2 capture: A review. IOP Conference Series: Earth and Environmental Science, 64(1). https://doi.org/10.1088/1755-1315/64/1/012046
  21. Zanganeh, K. E., Shafeen, A., & Salvador, C. (2009). CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit. Energy Procedia, 1(1), 247–252. https://doi.org/10.1016/j.egypro.2009.01.035

Last update:

No citation recorded.

Last update:

No citation recorded.