skip to main content

Climate Change and Flood Exposure in Settlements: Spatial Analysis of Geographical and Topographical Factors for Urban Resilience

1Politeknik Negeri Samarinda, Indonesia

2Architecture and Planning Department, Universitas Gadjah Mada Yogyakarta, Indonesia

Open Access Copyright 2025 Journal of Architectural Design and Urbanism under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Climate change has increased the frequency and intensity of flood events, posing substantial threats to urban settlements, especially those situated in topographically vulnerable areas. This study investigates the role of geographical and topographical attributes—such as elevation, slope, proximity to water bodies, and landform configuration—in shaping flood exposure. Through a systematic literature review of 31 peer-reviewed articles, the research highlights the physical determinants of flood risk under changing climate conditions. It identifies critical spatial factors contributing to exposure, including natural features (e.g., low-lying coastlines and floodplains) and anthropogenic interventions (e.g., artificial fill, unregulated urban expansion, and inadequate drainage). Case studies from diverse contexts—such as O‘ahu (Hawai‘i), Bekasi (Indonesia), and the Tanaro River Valley (Italy)—demonstrate how these spatial characteristics interact with climate-driven hazards to amplify urban flood risks. Unlike many previous studies that emphasize hazard intensity or socio-economic vulnerability, this research narrows its scope to physical exposure as a foundational dimension of risk. The findings stress the need for spatially grounded planning approaches that integrate topographic analysis and nature-based solutions into disaster risk reduction and urban resilience strategies. By focusing on exposure, this study provides a conceptual contribution to the field of urban climate adaptation, reframing physical geography not as a passive backdrop but as an active and dynamic determinant of vulnerability. This study highlights physical exposure as an active spatial condition, offering a reframed perspective for integrating topographic insight into urban flood resilience planning.

Fulltext View|Download
Keywords: climate change; flood exposure; geographical location; topography; settlement

Article Metrics:

  1. Alexandrakis, G., Vita, S. d., & Vito, M. A. D. (2019). Preliminary Risk Assessment at Ustica Based on Indicators of Natural and Human Processes. Annals of Geophysics, 61(Vol 61 (2018)). https://doi.org/10.4401/ag-7765
  2. Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A. d., Salamon, P., Wyser, K., & Feyen, L. (2017). Global Projections of River Flood Risk in a Warmer World. Earth S Future, 5(2), 171–182. https://doi.org/10.1002/2016ef000485
  3. Alharbi, S., & Mills, G. (2021). Assessment of Exposure to Flash Flooding in an Arid Environment: A Case Study of the Jeddah City Neighborhood Abruq Ar Rughamah, Saudi Arabia. 383–397. https://doi.org/10.1007/978-981-16-2904-4_14
  4. Ali, S. A., Waqar, S. A., Jamal, S., Ali, S., & Hashmi, S. B. (2018). Climate Change: A Public Health Issue. Annals of Clinical and Laboratory Research, 06(04). https://doi.org/10.21767/2386-5180.100273
  5. Alifu, H., Hirabayashi, Y., Imada, Y., & Shiogama, H. (2022). Enhancement of River Flooding Due to Global Warming. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25182-6
  6. Alves, P. B. R., Djordjević, S., & Javadi, A. A. (2021). An Integrated Socio-Environmental Framework for Mapping Hazard-Specific Vulnerability and Exposure in Urban Areas. Urban Water Journal, 18(7), 530–543. https://doi.org/10.1080/1573062x.2021.1913505
  7. Argyriou, A. V., Teeuw, R., & Sarris, A. (2017). GIS-based Landform Classification of Bronze Age Archaeological Sites on Crete Island. Plos One, 12(2), e0170727. https://doi.org/10.1371/journal.pone.0170727
  8. Arku, F. S. (2013). Local Creativity for Adapting to Climate Change Among Rural Farmers in the Semi-Arid Region of Ghana. International Journal of Climate Change Strategies and Management, 5(4), 418–430. https://doi.org/10.1108/ijccsm-08-2012-0049
  9. Arnous, M. O., El-Rayes, A. E., El-Nady, H., & Helmy, A. M. (2022). Flash Flooding Hazard Assessment, Modeling, and Management in the Coastal Zone of Ras Ghareb City, Gulf of Suez, Egypt. Journal of Coastal Conservation, 26(6). https://doi.org/10.1007/s11852-022-00916-w
  10. Ashtari, M. N., & Correia, M. (2021). Assessment of Vulnerability and Site Adaptive Capacity to the Risk of Climate Change: The Case of Tchogha Zanbil World Heritage Earthen Site in Iran. Journal of Cultural Heritage Management and Sustainable Development, 12(2), 107–125. https://doi.org/10.1108/jchmsd-06-2021-0108
  11. Azizat, N. & Wan Mohd Sabki Wan Omar. (2018). Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis. E3s Web of Conferences, 34, 02028. https://doi.org/10.1051/e3sconf/20183402028
  12. Bera, A., Meraj, G., Kanga, S., Farooq, M., Singh, S. K., Sahu, N., & Kumar, P. (2022). Vulnerability and Risk Assessment to Climate Change in Sagar Island, India. Water, 14(5), 823. https://doi.org/10.3390/w14050823
  13. Botta, F., Dahl‐Jensen, D., Rahbek, C., Svensson, A., & Nogués‐Bravo, D. (2019). Abrupt Change in Climate and Biotic Systems. Current Biology, 29(19), R1045–R1054. https://doi.org/10.1016/j.cub.2019.08.066
  14. Chakraborty, L., Thistlethwaite, J., Minano, A., Henstra, D., & Scott, D. (2021). Leveraging Hazard, Exposure, and Social Vulnerability Data to Assess Flood Risk to Indigenous Communities in Canada. International Journal of Disaster Risk Science, 12(6), 821–838. Scopus. https://doi.org/10.1007/s13753-021-00383-1
  15. Chen, J., Jiang, K., Li, Y., Wang, S., & Bu, W. (2024). Climate Change Effects on the Diversity and Distribution of Soybean True Bugs Pests. Pest Management Science, 80(10), 5157–5167. https://doi.org/10.1002/ps.8243
  16. Colaninno, N., Basu, R., Hosseini, M., Alhassan, A., Liu, L., & Sevtsuk, A. (2024). A Sidewalk-Level Urban Heat Risk Assessment Framework Using Pedestrian Mobility and Urban Microclimate Modeling. Environment and Planning B Urban Analytics and City Science, 52(5), 1071–1090. https://doi.org/10.1177/23998083241280746
  17. Crane, T., Delaney, A., Tamás, P. A., Chesterman, S., & Ericksen, P. (2017). A Systematic Review of Local Vulnerability to Climate Change in Developing Country Agriculture. Wiley Interdisciplinary Reviews Climate Change, 8(4). https://doi.org/10.1002/wcc.464
  18. D’Amato, M., Cecchi, L., Annesi‐Maesano, I., & D’Amato, G. (2018). News on Climate Change, Air Pollution, and Allergic Triggers of Asthma. Journal of Investigational Allergology and Clinical Immunology, 28(2), 91–97. https://doi.org/10.18176/jiaci.0228
  19. Dang, A. T. N., & Kumar, L. (2017). Application of Remote Sensing and GIS-based Hydrological Modelling for Flood Risk Analysis: A Case Study of District 8, Ho Chi Minh City, Vietnam. Geomatics Natural Hazards and Risk, 8(2), 1792–1811. https://doi.org/10.1080/19475705.2017.1388853
  20. Elshafei, A. M. (2022). General Overview of Climate Change and Global Warming: Their Effect on Microorganisms. International Journal of Environment and Climate Change, 1378–1387. https://doi.org/10.9734/ijecc/2022/v12i1131116
  21. Estoque, R. C., Ooba, M., Seposo, X., Togawa, T., Hijioka, Y., Takahashi, K., & Nakamura, S. (2020). Heat Health Risk Assessment in Philippine Cities Using Remotely Sensed Data and Social-Ecological Indicators. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15218-8
  22. Fitriyati, N., Arifin, H. S., Kaswanto, R. L., & Marimin. (2024). Enhancing land use planning through integrating landscape analysis and flood inundation prediction Bekasi City’s in 2030. Geomatics, Natural Hazards and Risk, 15(1), 2360623. https://doi.org/10.1080/19475705.2024.2360623
  23. Flahault, A., Castañeda, R. R. d., & Bolon, I. (2016). Climate Change and Infectious Diseases. Public Health Reviews, 37(1). https://doi.org/10.1186/s40985-016-0035-2
  24. Giwa, S. O., Sulaiman, M. A., & Nwaokocha, C. N. (2017). Inventory of Greenhouse Gases Emissions From Gasoline and Diesel Consumption in Nigeria. Nigerian Journal of Technological Development, 14(1), 1. https://doi.org/10.4314/njtd.v14i1.1
  25. Gómez, A. M. O., Montiel-González, C., Gallegos, Á., Pacheco, A., & Bautista, F. (2019). Climatic Hazard Indicators for Rainfed Maize in a Developing Country: The Case of Bajo Balsas, Mexico. Nova Scientia, 11(22), 26–52. https://doi.org/10.21640/ns.v11i22.1682
  26. Gribovszki, Z., Kalicz, P., Palocz-Andresen, M., Szalay, D., & Varga, T. (2019). Hydrological Role of Central European Forests in Changing Climate – Review. Időjárás, 123(4), 535–550. https://doi.org/10.28974/idojaras.2019.4.8
  27. He, Y., Ding, M., Zheng, H., Gao, Z., Huang, T., Duan, Y., Cui, X., & Luo, S. (2023). Integrating Development Inhomogeneity Into Geological Disasters Risk Assessment Framework in Mountainous Areas: A Case Study in Lushan–Baoxing Counties, Southwestern China. Natural Hazards, 117(3), 3203–3229. https://doi.org/10.1007/s11069-023-05983-2
  28. Hornsey, M. J., & Fielding, K. S. (2019). Understanding (And Reducing) Inaction on Climate Change. Social Issues and Policy Review, 14(1), 3–35. https://doi.org/10.1111/sipr.12058
  29. Jančovič, M., & Kidová, A. (2024). Floodplain identification in the context of flood exposure of marginalized Roma communities. Geografický Časopis / Geographical Journal, 76(4), 341–354. https://doi.org/10.31577/geogrcas.2024.76.4.18
  30. Kaspersen, P. S., Ravn, N. H., Arnbjerg‐Nielsen, K., Madsen, H., & Drews, M. (2017). Comparison of the Impacts of Urban Development and Climate Change on Exposing European Cities to Pluvial Flooding. Hydrology and Earth System Sciences, 21(8), 4131–4147. https://doi.org/10.5194/hess-21-4131-2017
  31. Kelly, M., Schwarz, I., Ziegelaar, M., Watkins, A. B., & Kuleshov, Y. (2023). Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Hydrology, 10(2), 26. https://doi.org/10.3390/hydrology10020026
  32. Kelman, I. (2015). Climate Change and the Sendai Framework for Disaster Risk Reduction. International Journal of Disaster Risk Science, 6(2), 117–127. https://doi.org/10.1007/s13753-015-0046-5
  33. Kelman, I., Gaillard, J. C., & Mercer, J. (2015). Climate Change’s Role in Disaster Risk Reduction’s Future: Beyond Vulnerability and Resilience. International Journal of Disaster Risk Science, 6(1), 21–27. https://doi.org/10.1007/s13753-015-0038-5
  34. Kouakou, M., Tiémélé, J. A., Djagoua, É., & Gnandi, K. (2023). Assessing potential coastal flood exposure along the Port-Bouët Bay in Côte d’Ivoire using the enhanced bathtub model. Environmental Research Communications, 5(10), 105001. https://doi.org/10.1088/2515-7620/acfdfa
  35. Lane, R., & Kay, A. L. (2021). Climate Change Impact on the Magnitude and Timing of Hydrological Extremes Across Great Britain. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.684982
  36. Li, W., Li, P., Feng, Z., & Xiao, C. (2022). GIS-Based Modeling of Human Settlement Suitability for the Belt and Road Regions. International Journal of Environmental Research and Public Health, 19(10), 6044. https://doi.org/10.3390/ijerph19106044
  37. Mandarino, A., Faccini, F., Luino, F., Bono, B., & Turconi, L. (2023). Integrated Approach for the Study of Urban Expansion and River Floods Aimed at Hydrogeomorphic Risk Reduction. Remote Sensing, 15(17), 4158. https://doi.org/10.3390/rs15174158
  38. Massaro, M., Dumay, J., & Guthrie, J. (2016). On the Shoulders of Giants: Undertaking a Structured Literature Review in Accounting. Accounting Auditing & Accountability Journal, 29(5), 767–801. https://doi.org/10.1108/aaaj-01-2015-1939
  39. Michaelis, T., Brandimarte, L., & Mazzoleni, M. (2020). Capturing Flood-Risk Dynamics With a Coupled Agent-Based and Hydraulic Modelling Framework. Hydrological Sciences Journal, 65(9), 1458–1473. https://doi.org/10.1080/02626667.2020.1750617
  40. Molina, T., & Abadal, E. (2021). The Evolution of Communicating the Uncertainty of Climate Change to Policymakers: A Study of IPCC Synthesis Reports. Sustainability, 13(5), 2466. https://doi.org/10.3390/su13052466
  41. Murray, K., Barbee, M., Thompson, P., & Fletcher, C. (2025). Coastal land subsidence accelerates timelines for future flood exposure in Hawai’i. Communications Earth & Environment, 6(1), 123. https://doi.org/10.1038/s43247-025-02108-4
  42. Ndah, A. B., & Odihi, J. O. (2017). A Systematic Study of Disaster Risk in Brunei Darussalam and Options for Vulnerability-Based Disaster Risk Reduction. International Journal of Disaster Risk Science, 8(2), 208–223. https://doi.org/10.1007/s13753-017-0125-x
  43. Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Lampe, M. v., Lotze‐Campen, H., Mason-D’Croz, D., Meijl, H. v., Müller, C., Popp, A., Robertson, R., Robinson, S., … Willenbockel, D. (2013). Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks. Proceedings of the National Academy of Sciences, 111(9), 3274–3279. https://doi.org/10.1073/pnas.1222465110
  44. Ouedraogo, L. S., & Mundler, P. (2019). Local Governance and Labor Organizations on Artisanal Gold Mining Sites in Burkina Faso. Sustainability, 11(3), 616. https://doi.org/10.3390/su11030616
  45. Pala, O. N., Daloglu Cetinkaya, I., & Yazar, M. (2025). Urban Flood Exposure and Vulnerability: Insights From Pendik District of Istanbul. Journal of Flood Risk Management, 18(1), e70000. https://doi.org/10.1111/jfr3.70000
  46. Pappalardo, V., & La Rosa, D. (2023). Spatial Analysis of Flood Exposure and Vulnerability for Planning More Equal Mitigation Actions. Sustainability, 15(10), 7957. https://doi.org/10.3390/su15107957
  47. Pathania, S. S., & Bala, R. (2024). Consequences of Climate Change at World Level: A Theoretical Review. International Journal for Multidisciplinary Research, 6(2), 1–8
  48. Pyke, C. R., & Andelman, S. J. (2007). Land Use and Land Cover Tools for Climate Adaptation. Climatic Change, 80(3–4), 239–251. https://doi.org/10.1007/s10584-006-9110-x
  49. Quinn, C. P. (2024). Settlement Ecology of Bronze Age Transylvania. Frontiers in Human Dynamics, 6. https://doi.org/10.3389/fhumd.2024.1360479
  50. Roy, B., Khan, Md. S. M., A. K. M. Saiful Islam, Khan, M. J. U., & Mohammed, K. (2021). Integrated Flood Risk Assessment of the Arial Khan River Under Changing Climate Using IPCC AR5 Risk Framework. Journal of Water and Climate Change, 12(7), 3421–3447. https://doi.org/10.2166/wcc.2021.341
  51. Sarkar, S. K., Morshed, Md. M., & Chakraborty, T. (2022). COVID-19 Vulnerability Mapping of Asian Countries. Disaster Medicine and Public Health Preparedness, 17. https://doi.org/10.1017/dmp.2022.139
  52. Schober, B., Hauer, C., & Habersack, H. (2020). Floodplain Losses and Increasing Flood Risk in the Context of Recent Historic Land Use Changes and Settlement Developments: Austrian Case Studies. Journal of Flood Risk Management, 13(3). https://doi.org/10.1111/jfr3.12610
  53. Shampa, S., Roy, B., Hussain, Md. M., A. K. M. Saiful Islam, Rahman, Md. A., & Mohammed, K. (2022). Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications From the Brahmaputra-Jamuna’s Braided-Plain. Geohazards, 3(4), 465–491. https://doi.org/10.3390/geohazards3040024
  54. Sher, F., Curnick, O., & Azizan, M. T. (2021). Sustainable Conversion of Renewable Energy Sources. Sustainability, 13(5), 2940. https://doi.org/10.3390/su13052940
  55. Shi, W., Wang, S., & Yang, Q. (2010). Climate Change and Global Warming. Reviews in Environmental Science and Bio/Technology, 9(2), 99–102. https://doi.org/10.1007/s11157-010-9206-7
  56. Shrestha, B. B., Rasmy, M., & Kuribayashi, D. (2025). Flood Exposure Dynamics and Quantitative Evaluation of Low-Cost Flood Control Measures in the Bengawan Solo River Basin of Indonesia. Hydrology, 12(2), 38. https://doi.org/10.3390/hydrology12020038
  57. Stefanidis, S., Alexandridis, V., & Theodoridou, T. (2022). Flood Exposure of Residential Areas and Infrastructure in Greece. Hydrology, 9(8), 145. https://doi.org/10.3390/hydrology9080145
  58. Thannoun, R. G., & Ismaeel, O. A. (2024). Flood Risk Vulnerability Detection Based on the Developing Topographic Wetness Index Tool in Geographic Information System. Iop Conference Series Earth and Environmental Science, 1300(1), 012012. https://doi.org/10.1088/1755-1315/1300/1/012012
  59. Vanama, V. S. K., Rao, Y. S., & Bhatt, C. M. (2021). Change Detection Based Flood Mapping Using Multi-Temporal Earth Observation Satellite Images: 2018 Flood Event of Kerala, India. European Journal of Remote Sensing, 54(1), 42–58. https://doi.org/10.1080/22797254.2020.1867901
  60. Vivo, C. D., Barbato, G., Ellena, M., Capozzi, V., Budillon, G., & Mercogliano, P. (2023). Climate-Risk Assessment Framework for Airports Under Extreme Precipitation Events: Application to Selected Italian Case Studies. Sustainability, 15(9), 7300. https://doi.org/10.3390/su15097300
  61. Weber, E. U., & Stern, P. C. (2011). Public Understanding of Climate Change in the United States. American Psychologist, 66(4), 315–328. https://doi.org/10.1037/a0023253
  62. Whitmarsh, L. (2008). What’s in a Name? Commonalities and Differences in Public Understanding of “Climate Change” and “Global Warming.” Public Understanding of Science, 18(4), 401–420. https://doi.org/10.1177/0963662506073088
  63. Wing, O., Bates, P., Smith, A. M., Sampson, C., Johnson, K., Fargione, J., & Morefield, P. E. (2018). Estimates of Present and Future Flood Risk in the Conterminous United States
  64. Environmental Research Letters, 13(3), 034023. https://doi.org/10.1088/1748-9326/aaac65
  65. Wood, R., Crucifix, M., Lenton, T. M., Mach, K. J., Moore, C., New, M., Sharpe, S., Stocker, T. F., & Sutton, R. (2023). A Climate Science Toolkit for High Impact‐Low Likelihood Climate Risks. Earth S Future, 11(4). https://doi.org/10.1029/2022ef003369
  66. Wu, Y., Li, J., Wu, H., Duan, Y., Shen, H., & Du, S. (2024). Sustainable urban planning to control flood exposure in the coastal zones of China. Landscape Ecology, 39(8), 141. https://doi.org/10.1007/s10980-024-01951-8
  67. Xiao, Y., & Watson, M. (2017). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456x17723971
  68. Yona, L., Cashore, B., Jackson, R. B., Ometto, J. P., & Bradford, M. A. (2020). Refining National Greenhouse Gas Inventories. Ambio, 49(10), 1581–1586. https://doi.org/10.1007/s13280-019-01312-9

Last update:

No citation recorded.

Last update:

No citation recorded.