skip to main content

Analisis In Silico Interaksi Enzim Esterase dari Enterobacter terhadap Berbagai Turunan Paraben sebagai Kajian Awal Potensi Biodegradasi

*Arina Amalia Putri orcid scopus  -  Biotechnology Study Program, Department of Biology, Faculty of Sciences and Mathematics, Diponegoro University. Jl. Prof. Soedarto No.50275, Tembalang, Tembalang, Semarang, West Java, Indonesia 50275, Indonesia
Zubaidi Bachtiar orcid  -  Department of Bioengineering, Faculty of Engineering, Lombok Institute of Technology, Lombok, Indonesia, Indonesia
Dhea Ferda Pratiwi  -  Biotechnology Study Program, Graduate School, IPB University, Bogor, Indonesia, Indonesia
Husnul Khotimah  -  Microbiology Study Program, Department of Biology, Faculty of Sciences and Mathematics, , Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Paraben banyak digunakan sebagai pengawet pada industri kosmetik dan farmasi karena bersifat antimikroba dan stabil secara kimia.  Namun, senyawa ini tergolong sebagai endocrine disrupting chemicals (EDCs) yang mengganggu sistem hormonal dan berdampak negatif terhadap lingkungan. Residu paraben yang terakumulasi di perairan dan tanah menunjukkan sifat ‘pseudo-persisten’, sehingga diperlukan strategi mitigasi yang efektif. Studi ini menyajikan pendekatan inovatif melalui pemodelan in silico untuk mengeksplorasi potensi enzim esterase dari bakteri golongan Enterobacter dalam mendegradasi tiga turunan paraben: metilparaben, propilparaben, dan butilparaben. Hasil molecular docking menunjukkan bahwa ketiga senyawa mampu berinteraksi dengan enzim esterase, namun Interaksi butilparaben menunjukkan profil paling stabil, ditandai oleh ikatan hidrogen kuat, dominasi ikatan hidrofobik, dan salt bridge yang paling rapat. Temuan dari studi ini menunjukan potensi dari enzim esterase sebagai agen biodegradasi pada senyawa golongan paraben dengan rantai alkil yang lebih kompleks seperti butilparaben.


Fulltext View|Download
Keywords: Enzim esterase, molecular docking, paraben, toksisitas, biodegradasi

Article Metrics:

  1. Chatterjee, S., Adhikary, S., Bhattacharya, S., Chakraborty, A., Dutta, S., Roy, D., Ganguly, A., Nanda, S. dan Rajak, P., 2024, Parabens as The Double-edged Sword: Understanding the Benefits and Potential Health Risks. Science of The Total Environment, 954, 176547. https://doi.org/10.1016/j.scitotenv.2024.176547
  2. Lincho, J., Martins, R. C., dan Gomes, J., 2021, Paraben Compounds—part I: an Overview of Their Characteristics, Detection, and Impacts. Applied Sciences, 11, 5, 2307. https://doi.org/10.3390/app11052307
  3. Crovetto, S. I., Moreno, E., Dib, A. L., Espigares, M., dan Espigares, E., 2017, Bacterial Toxicity Testing and Antibacterial Activity of Parabens. Toxicological & Environmental Chemistry, 99, 5-6, 858-868. https://doi.org/10.1080/02772248.2017.1300905
  4. Al‐Halaseh, L. K., Al‐Adaileh, S., Mbaideen, A., Hajleh, M. N. A., Al‐Samydai, A., Zakaraya, Z. Z., dan Dayyih, W. A., 2022, Implication of Parabens in Cosmetics and Cosmeceuticals: Advantages and Limitations. Journal of Cosmetic Dermatology, 21, 8, 3265-3271. https://doi.org/10.1111/jocd.14775
  5. Hager, E., Chen, J., dan Zhao, L., 2022, Minireview: Parabens Exposure and Breast Cancer. International journal of environmental research and public health, 19, 3, 1873. https://doi.org/10.3390/ijerph19031873
  6. Tjiang, W. M., Dewi, N, P, D, K., Prayoga, P, A, A., Suariyani, D, P, A, Maharani, G, A, K, Rismayani, P, A, dan Astuti, N, M, W., 2019, Analisis Kualitatif dan Kuantitatif Kandungan Paraben dalam Kosmetik Hand Body Lotion. Indonesian Journal of Legal and Forensic Sciences, 9, 2, 89-96. DOI: 10.24843/IJLFS.2019.v09.i02.p04
  7. (BPOM) Badan Pengawas Obat dan Makanan Republik Indonesia. (2022). Peraturan Badan Pengawas Obat dan Makanan Nomor 17 Tahun 2022 tentang Perubahan atas Peraturan Badan Pengawas Obat dan Makanan Nomor 23 Tahun 2019 tentang Persyaratan Teknis Bahan Kosmetika. https://peraturan.bpom.go.id
  8. Vale, F., Sousa, C. A., Sousa, H., Santos, L., dan Simões, M., 2022. Parabens as Emerging Contaminants: Environmental Persistence, Current Practices and Treatment Processes. Journal of Cleaner Production, 347, 131244. https://doi.org/10.1016/j.jclepro.2022.131244
  9. Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Kagota, K., Katsuki, S., Yamamoto, A., Kagami, Y., Tatarazako, N., 2011, Aquatic Toxicity and Ecological Risk Assessment of Seven Parabens: Individual and Additive Approach. Science of The Total Environment. 410–411:102–111. https://doi.org/10.1016/j.scitotenv.2011.09.040
  10. Xiang, J., Lv, B. R., Shi, Y. J., Chen, W. M., dan Zhang, J. L., 2024, Environmental Pollution of Paraben Needs Attention: A Study of Methylparaben and Butylparaben Co-exposure Trigger Neurobehavioral Toxicity in Zebrafish. Environmental Pollution, 356, 124370. https://doi.org/10.1016/j.envpol.2024.124370
  11. Yang, C. W., dan Lee, W. C., 2023, Parabens Increase Sulfamethoxazole-, Tetracycline-and Paraben-Resistant Bacteria and Reshape the Nitrogen/sulfur Cycle-associated Microbial Communities in Freshwater River Sediments. Toxics, 11, 4, 387. https://doi.org/10.3390/toxics11040387
  12. Lu, J., Li, H., Tu, Y., dan Yang, Z., 2018, Biodegradation of Four Selected Parabens with Aerobic Activated Sludge and Their Transesterification Product. Ecotoxicology and environmental safety, 156, 48–55. doi: 10.1016/j.ecoenv.2018.02.078
  13. Valkova, N., Lépine, F., Bollet, C., Dupont, M., dan Villemur, R., 2002. PrbA, A Gene Coding for An Esterase Hydrolyzing Parabens in Enterobacter cloacae and Enterobacter gergoviae Strains. Journal of bacteriology, 184, 18, 5011-5017. https://doi.org/10.1128/jb.184.18.5011-5 017.2002
  14. Zhu, B., dan Wei, N., 2018, Biocatalytic Degradation of Parabens Mediated by Cell Surface Displayed Cutinase. Environmental Science & Technology, 53, 1, 354-364. https://doi.org/10.1021/acs.est.8b05275
  15. Daina A, Michielin O, Zoete V., 2017, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Report. 7, 1–13. https://doi.org/10.1038/srep42717
  16. Banerjee P, Kemmler E, Dunkel M, Preissner R, 2024, ProTox 3.0: A Webserver for The Prediction of Toxicity of Chemicals. Nucleic Acids Research. Jul 5;52(W1):W513–20. doi: 10.1093/nar/gkae303
  17. Haman C, Dauchy X, Rosin C, Munoz J. F., 2015, Occurrence, Fate and Behavior of Parabens in Aquatic Environments: A review. Water Research, 68, 1–11. doi: 10.1016/j.watres.2014.09.030
  18. Gaidhani PM, Chakraborty S, Ramesh K, Velayudhaperumal Chellam P, van Hullebusch ED, 2024, Molecular Interactions of Paraben Family of Pollutants with Embryonic Neuronal Proteins of Danio rerio: A Step Ahead in Computational Toxicity Towards Adverse Outcome Pathway. Chemosphere. 351, 141155. doi: 10.1016/j.chemosphere.2024.141155
  19. Nowak, K., Ratajczak-Wrona, W., Gorska, M., dan Jabłonska, E., 2018. Parabens and Their Effects on The Endocrine System. Molecular and Cellular Endocrinology, 474, 238–251. https://doi. org/10.1016/j.mce.2018.03.014
  20. Fransway, A.F., Fransway, P.J., V Belsito, D., Warshaw, E.M., Sasseville, D., Fowler, J.F., DeKoven, J.G., Pratt, M.D., Maibach, H.I., Taylor, J.S., Marks, J.G., Mathias, C.G.T., DeLeo, V.A., Zirwas, J.M., Zug, K.A., Atwater, A.R., Silverberg, J., dan Reeder, M.J., 2019, Parabens, Dermatitis, 30, 3–31. https://doi.org/10.1097/ DER.0000000000000429
  21. Dobbins, L. L., Usenko, S., Brain, R. A., dan Brooks, B. W, 2009, Probabilistic Ecological Hazard Assessment of Parabens using Daphnia magna and Pimephales promelas. Environmental toxicology and chemistry, 28, 12, 2744-2753. https://doi.org/10.1897/08-523.1
  22. Tong, T. T. V., Cao, T. T., Tran, N. H., Le, T. K. V., dan Le, D. C., 2021, Green, Cost-Effective Simultaneous Assay of Chloramphenicol, Methylparaben, and Propylparaben in Eye-Drops by Capillary Zone Electrophoresis. Journal of analytical methods in chemistry, 5575701. https://doi.org/10.1155/2021/5575701
  23. Neri, I., Laneri, S., Di, Lorenzo, R., Dini, I., Russo, G., Grumetto, L., 2022, Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography. Molecules. 27, 13. https://doi.org/10.3390/molecu les27134263
  24. Stoiber, T., 2019. What Are Parabens, and Why Don’t They Belong in Cosmetics? Environmental Working Group
  25. Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., dan Preissner, R., 2014, ProTox: A Web Server for The In Silico Prediction of Rodent Oral Toxicity, Nucleic acids research, 42, 1, 53-58. https://doi.org/10.1093/nar/gku401
  26. Ivanović, V., Rančić, M., Arsić, B., dan Pavlović, A., 2020, Lipinski’s Rule of Five, Famous Extensions and Famous Exceptions. Popular Scientific Article, 3, 1, 171-177
  27. Ouedraogo, G., Alexander-White, C., Bury, D., Clewell, H. J., Cronin, M., Cull, T., Dent, M., Desprez, B., Detroyer, A., Ellison, C., et al., 2022, Read-across and New Approach Methodologies Applied in A 10-step Framework for Cosmetics Safety Assessment – A Case Study with Parabens. Regulatory Toxicology Pharmacology, 132, 105161. https://doi.org/10.1016/j.yrtph.2022.105161
  28. Liu, S., Wang, P., Wang, C., Chen, J., Wang, X., Hu, B., dan Shan, X., 2023, Disparate Toxicity Mechanisms of Parabens with Different Alkyl Chain Length in Freshwater Biofilms: Ecological Hazards Associated with Antibiotic Resistome. Science of The Total Environment, 881, 163168. https://doi.org/10.1016/j.scitotenv.2023.163168
  29. Bachtiar, Z., Mustopa, A. Z., Astuti, R. I., Fauziyah, F., Fatimah, F., Rozirwan, R., Wulandari, T. N. M., Wijaya, D. P., Agustriani, F., Arwansyah, A., Irawan, H., Mamangkey, J., 2023, Production of Codon-optimized Factor C Fragment from Tachypleus gigas in The Pichia pastoris GS115 Expression System for Endotoxin Detection. Journal of Genetic Engineering and Biotechnology, 21, 103. https://doi.org/10.1186/s43141-023- 00557-y
  30. Agu, P.C., Afiukwa, C.A., Orji, O.U. Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., dan Aja, P. M., 2023, Molecular Docking as A Tool for The Discovery of Molecular Targets of Nutraceuticals in Disease Management. Scientific Report 13, 13398. https://doi.org/10.1038/s41598-023-40160-2

Last update:

No citation recorded.

Last update:

No citation recorded.