skip to main content

Pengaruh pH Terhadap Sintesis Silika Gel dari Limbah Geotermal dengan Penambahan Cetyltrimethylammonium Bromide (CTAB) untuk Adsorpsi Rhodamine B

Aulia Ekadenti  -  Chemistry Department, Diponegoro University, Indonesia
*Pardoyo Pardoyo  -  Chemistry Department, Diponegoro University, Indonesia
Sriyanti Sriyanti  -  Chemistry Department, Diponegoro University, Indonesia
Open Access Copyright 2023 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Penelitian tentang pengaruh pH gelasi terhadap karakteristik silika gel dari limbah geotermal telah dilakukan. Silika dari limbah geothermal diekstraksi menggunakan larutan natrium hidroksida (NaOH) untuk menghasilkan larutan natrium silikat. Sintesis silika gel dilakukan menggunakan metode sol-gel dari natrium silikat dan cetyltrimethylammonium bromide (CTAB). Kondisi sintesis dimodifikasi dengan memvariasikan pH gelasi pada 3, 5, 7, 9, dan 11 dengan menambahkan H2SO4  ke dalam campuran natrium silikat/CTAB. Silika hasil sintesis digunakan sebagai adsorben untuk adsorpsi rhodamine b. Kondisi adsorpsi dilakukan dengan memvariasikan konsentrasi awal pada 20, 40, 60, 80, 100 dan 120 ppm. Berdasarkan spektra FTIR (Fourier Transform Infra Red), silika gel hasil sintesis pada rentang pH gelasi yang diteliti (3-11) mengandung gugus silanol (Si-OH) dan siloksan (Si-O-Si). Analisis GSA (Gas Sorption Analyzer) mengindikasikan silika gel yang diperoleh merupakan padatan mesopori dengan distribusi ukuran pori pada SM-3 diamati pada ukuran 2 nm. Silika hasil sintesis pH 3 memiliki luas permukaan paling tinggi 61,74 m2/g, volume pori total 0,07 cm3/g, dan diameter pori rata-rata 2,23 nm. Analisis spektrofotometer UV-Vis menunjukkan kemampuan adsorpsi tertinggi dicapai oleh SM-3 sebesar 89,28%.

 

Fulltext View|Download
Keywords: Silika gel, Limbah geotermal, CTAB, Adsorpsi, Rhodamine B
Funding: Universitas Diponegoro

Article Metrics:

  1. Pambudi, N.A., et al., The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia. Geothermics, 2015. 54: p. 109-114
  2. Geodipa, Preventions and Solutions for the Scale Problem at the Geothermal Power Plant and CDM Study in Indonesia. 2006, Tohoku Electric Power Co., Inc: Jepang
  3. Jenie, S.A., et al. Preparation of silica nanoparticles from geothermal sludge via sol-gel method. in AIP Conference Proceedings. 2018. AIP Publishing
  4. Kumar, S., M. Malik, and R. Purohit, Synthesis methods of mesoporous silica materials. Materials Today: Proceedings, 2017. 4(2): p. 350-357
  5. Singh, L.P., et al., Sol-Gel processing of silica nanoparticles and their applications. Advances in colloid and interface science, 2014. 214: p. 17-37
  6. Ayegba, C., et al., Production of Silica Gel from Clay Inter. 2015. 5960: p. 123-126
  7. Vazquez, N.I., et al., Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017. 56(3): p. 139-145
  8. Setiyanto, S., I. Riwayati, and L. Kurniasari, Adsorpsi Pewarna Tekstil Rodhamin B Menggunakan Senyawa Xanthat Pulpa Kopi. JURNAL ILMIAH MOMENTUM, 2015. 11(1)
  9. Scott, R.P.W., Silica gel and bonded phases: their production, properties, and use in LC. Vol. 4. 1993: John Wiley & Sons Inc
  10. DS, R.M.S. and N.W. Rudiyansyah, SINTESIS DAN KARAKTERISASI SILIKA GEL DARI LIMBAH KACA TERMODIFIKASI ASAM STEARAT. 2014
  11. Scherer, G.W.J.J.o.N.-C.S., Mechanics of syneresis I. Theory. 1989. 108(1): p. 18-27
  12. Trindade, F. and M.J. Politi, Sol-Gel Chemistry—Deals With Sol–Gel Processes, in Nano Design for Smart Gels. 2019, Elsevier. p. 15-34
  13. Brinker, C.J., C.J. Brinker, and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. 1990: Elsevier Science
  14. Lenza, R.F. and W.L.J.M.R. Vasconcelos, Preparation of silica by sol-gel method using formamide. 2001. 4(3): p. 189-194
  15. Nuryono, N. and N.J.I.J.o.C. Narsito, Effect Of Acid Concentration On Characters Of Silica Gel Synthesized From Sodium Silicate. 2005. 5(1): p. 23-30
  16. Rafiee, E., et al., Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). 2012. 2(1): p. 29
  17. Jamil, M., et al., Atmospheric pressure glow discharge (APGD) plasma generation and surface modification of aluminum and silicon si (100). 2017. 12(2): p. 595-604
  18. Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). 2015. 87(9-10): p. 1051-1069
  19. Chang, S.-S., et al., Mesoporosity as a new parameter for understanding tension stress generation in trees. 2009. 60(11): p. 3023-3030
  20. Faustova, Z.V. and Y.G. Slizhov, Effect of solution pH on the surface morphology of sol–gel derived silica gel. Inorganic Materials, 2017. 53(3): p. 287-291

Last update:

No citation recorded.

Last update:

No citation recorded.