skip to main content

Review: Modern Extraction Methods for Extraction Proanthocyanidins from Natural Products

Li’izzah Diana Manzil  -  Universitas Muhammadiyah Lamongan, Indonesia
*Aditya Sindu Sakti orcid scopus  -  Universitas Khairun, Indonesia
Received: 23 Jun 2025; Revised: 22 Sep 2025; Accepted: 7 Oct 2025; Available online: 29 Jan 2026; Published: 29 Jan 2026.
Open Access Copyright 2026 Generics: Journal of Research in Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Proanthocyanidins are widely distributed in many plant species and are recognized for their beneficial health effects, particularly their antioxidant and anti-inflammatory activities. This literature review aims to evaluate modern extraction techniques used to isolate proanthocyanidins from natural sources. Conventional methods, such as maceration and Soxhlet extraction, often result in reduced yields because proanthocyanidins are heat-sensitive and susceptible to oxidation. To address these limitations, this review explores alternative modern extraction approaches. Relevant peer-reviewed articles were identified through a comprehensive search of five academic databases: ScienceDirect, PubMed, Google Scholar, NCBI, and BMC. The modern extraction techniques examined include Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), Enzyme-Assisted Extraction (EAE), and Pressurized Liquid Extraction (PLE). Evidence from 23 selected studies shows that UAE and MAE are among the most effective and efficient methods for extracting proanthocyanidins from natural matrices. These findings underscore the potential of modern extraction technologies to improve both the yield and quality of proanthocyanidins, supporting their broader application in pharmaceutical and nutraceutical fields.


Fulltext View|Download
Keywords: Bioactive Compounds; Microwave-Assisted Extraction; Natural Products; Proanthocyanidins; Ultrasound-Assisted Extraction

Article Metrics:

  1. Abedelmaksoud, T.G. et al. (2025) ‘Bioactive Compounds of Plant‐Based Food: Extraction, Isolation, Identification, Characteristics, and Emerging Applications,’ Food Science & Nutrition, 13(6). Available at: https://doi.org/10.1002/fsn3.70351
  2. Adhiksana, A. (2017) ‘Perbandingan Metode Konvensional Ekstraksi Pektin dari Kulit Buah Pisang dengan Metode Ultrasonik,’ Journal of Research and Technology, 3(2), pp. 80–87. Available at: https://doi.org/10.55732/jrt.v3i2.276
  3. Aji, A., Bahri, S. and Tantalia, T. (2018) ‘Pengaruh Waktu Ekstraksi dan Konsentrasi HCl untuk Pembuatan Pektin dari Kulit Jeruk Bali (Citrus maxima),’ Jurnal Teknologi Kimia Unimal, 6(1), pp. 33–44. Available at: https://doi.org/10.29103/jtku.v6i1.467
  4. Alvarez-Rivera, G. et al. (2020) ‘Pressurized Liquid Extraction,’ in Liquid-Phase Extraction. Elsevier, pp. 375–398. Available at: https://doi.org/10.1016/B978-0-12-816911-7.00013-X
  5. Arrofiqi, M.R., Sakti, A.S. and Mayangsari, F.D. (2024) ‘Kajian Literatur: Aplikasi Sejumlah Metode Ekstraksi Konvensional untuk Mengekstraksi Senyawa Fenolik dari Bahan Alam,’ Jurnal Penelitian Farmasi & Herbal, 7(1), pp. 8–24. Available at: https://doi.org/10.36656/jpfh.v7i1.1972
  6. Bhadange, Y.A., Carpenter, J. and Saharan, V.K. (2024) ‘A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources,’ ACS Omega, 9(29), pp. 31274–31297. Available at: https://doi.org/10.1021/acsomega.4c02718
  7. Biswas, R. et al. (2023) ‘Microwave and Ultrasound-assisted Extraction of Bioactive Compounds from Papaya: A Sustainable Green Process,’ Ultrasonics Sonochemistry, 101(106677), pp. 1–15. Available at: https://doi.org/10.1016/j.ultsonch.2023.106677
  8. Bitwell, C. et al. (2023) ‘A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants,’ Scientific African, 19(e01585). Available at: https://doi.org/10.1016/j.sciaf.2023.e01585
  9. Brus, M. et al. (2021) ‘Effect of Hydrolyzable Tannins on Glucose-Transporter Expression and Their Bioavailability in Pig Small-Intestinal 3D Cell Model,’ Molecules, 26(2), p. 345. Available at: https://doi.org/10.3390/molecules26020345
  10. Candra, L.M.M., Andayani, Y. and Wirasisya, D.G. (2021) “Pengaruh Metode Ekstraksi Terhadap Kandungan Fenolik Total dan Flavonoid Total Pada Ekstrak Etanol Buncis (Phaseolus vulgaris L.),” Jurnal Pijar Mipa, 16(3), pp. 397–405. Available at: https://doi.org/10.29303/jpm.v16i3.2308
  11. Carreira-Casais, A. et al. (2021) “Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae,” International Journal of Environmental Research and Public Health, 18(17), p. 9153. Available at: https://doi.org/10.3390/ijerph18179153
  12. Chaves, J.O. et al. (2020) “Extraction of Flavonoids From Natural Sources Using Modern Techniques,” Frontiers in Chemistry, 8(507887), pp. 1–25. Available at: https://doi.org/10.3389/fchem.2020.507887
  13. Chen, J. et al. (2020) “Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction,” Biomolecules, 10(2), p. 243. Available at: https://doi.org/10.3390/biom10020243
  14. Cosme, F. et al. (2025) “A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities,” Molecules, 30(4), p. 800. Available at: https://doi.org/10.3390/molecules30040800
  15. Cravotto, G. and Binello, A. (2016) “Low-Frequency, High-Power Ultrasound-Assisted Food Component Extraction,” in Innovative Food Processing Technologies. Elsevier, pp. 3–29. Available at: https://doi.org/10.1016/B978-0-08-100294-0.00001-8
  16. Das, A.K. et al. (2020) ‘Review on Tannins: Extraction Processes, Applications and Possibilities,’ South African Journal of Botany, 135, pp. 58–70. Available at: https://doi.org/10.1016/j.sajb.2020.08.008
  17. Domínguez-rodríguez, G., Luisa, M. and Plaza, M. (2021) ‘Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry ( Prunus avium L .) pomace,’ Food Chemistry, 339(April 2020), p. 128086. Available at: https://doi.org/10.1016/j.foodchem.2020.128086
  18. Domínguez-Rodríguez, G., Marina, M.L. and Plaza, M. (2021) ‘Enzyme-assisted Extraction of Bioactive Non-extractable Polyphenols from Sweet Cherry (Prunus avium L.) Pomace,’ Food Chemistry, 339(128086), pp. 1–11. Available at: https://doi.org/10.1016/j.foodchem.2020.128086
  19. Dong, M. et al. (2021) ‘Ultrasound-assisted Extraction of Bayberry Tannin and Optimization using Response Surface Methodology,’ BioResources, 16(1), pp. 1825–1841. Available at: https://doi.org/10.15376/biores.16.1.1825-1841
  20. Dzah, C.S. et al. (2020) ‘The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review,’ Food Bioscience, 35(100547). Available at: https://doi.org/10.1016/j.fbio.2020.100547
  21. Fernández, K., Vega, M. and Aspé, E. (2015) ‘An Enzymatic Extraction of Proanthocyanidins from País Grape Seeds and Skins,’ Food Chemistry, 168, pp. 7–13. Available at: https://doi.org/10.1016/j.foodchem.2014.07.021
  22. Firdiyansyah, M.R. et al. (2024) “Kajian Literatur: Aplikasi Sejumlah Metode Ekstraksi Modern Untuk Mengekstraksi Senyawa Fenolik dari Bahan Alam,” Jurnal Farmasi (Journal of Pharmacy), 13(2), pp. 22–34. Available at: https://doi.org/10.373013/s6cgpw74
  23. Gil-Martín, E. et al. (2022) ‘Influence of The Extraction Method on The Recovery of Bioactive Phenolic Compounds from Food Industry By-products,’ Food Chemistry, 378, p. 131918. Available at: https://doi.org/10.1016/j.foodchem.2021.131918
  24. Hidayat, P.A.N.P., Puspawati, G.A.K.D. and Yusasrini, N.L.A. (2022) ‘Pengaruh Waktu dan Daya Microwave pada Metode Microwave Assisted Extraction (MAE)Terhadap Aktivitas Antioksidan dan Pigmen Ekstrak Daun Ubi kayu (Manihot Utilissima Pohl.),’ Jurnal Ilmu dan Teknologi Pangan (ITEPA), 11(1), pp. 134–146. Available at: https://doi.org/10.24843/itepa.2022.v11.i01.p14
  25. Hilbig, J. et al. (2018) ‘Ultrasonic-assisted Extraction Combined with Sample Preparation and Analysis Using LC-ESI-MS/MS Allowed The Identification of 24 New Phenolic Compounds in Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] Extracts,’ Food Research International, 106, pp. 549–557. Available at: https://doi.org/10.1016/j.foodres.2018.01.010
  26. Hoff, R.B. and Pizzolato, T.M. (2018) ‘Combining Extraction and Purification Steps in Sample Preparation for Environmental Matrices: A Review of Matrix Solid Phase Dispersion (MSPD) and Pressurized Liquid Extraction (PLE) Applications,’ TrAC Trends in Analytical Chemistry, 109, pp. 83–96. Available at: https://doi.org/10.1016/j.trac.2018.10.002
  27. Huma, Z.E. et al. (2018) ‘Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique,’ Journal of Food Processing and Preservation, 42(2), pp. 1–10. Available at: https://doi.org/10.1111/jfpp.13450
  28. Iriany, Angkasa, H. and Namira, C.A. (2021) ‘Ekstraksi Tanin dari Buah Balakka (Phyllanthus emblica L.) dengan Bantuan Microwave: Pengaruh Daya Microwave, Perbandingan Massa Kering Terhadap Jumlah Pelarut Etil Asetat,’ Jurnal Teknik Kimia USU, 10(1), pp. 8–12. Available at: https://doi.org/10.32734/jtk.v10i1.5318
  29. Iriany, Pandiangan, F. and Eka, C. (2017) ‘Ekstraksi Tanin dari Kulit Kayu Akasia dengan Menggunakan Microwave: Pengaruh Daya Microwave, Waktu Ekstraksi dan Jenis Pelaru,’ Jurnal Teknik Kimia USU, 6(3), pp. 52–57. Available at: https://doi.org/https://doi.org/10.32734/jtk.v6i3.1590
  30. Khaw, K.-Y. et al. (2017) ‘Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review,’ Molecules, 22(7), p. 1186. Available at: https://doi.org/10.3390/molecules22071186
  31. Khonchaisri, R. et al. (2022) ‘Optimization of Ultrasonic-Assisted Bioactive Compound Extraction from Green Soybean (Glycine max L.) and the Effect of Drying Methods and Storage Conditions on Procyanidin Extract,’ Foods, 11(12), p. 1775. Available at: https://doi.org/10.3390/foods11121775
  32. Kitryt, V. et al. (2020) ‘Zero waste biore fi ning of lingonberry ( Vaccinium vitis-idaea L.) pomace into functional ingredients by consecutive high pressure and enzyme assisted extractions with green solvents,’ Food Chemistry, 322(April). Available at: https://doi.org/10.1016/j.foodchem.2020.126767
  33. Kleekayai, T. et al. (2023) ‘Enzyme-Assisted Extraction of Plant Proteins,’ in Green Protein Processing Technologies from Plants. Cham: Springer International Publishing, pp. 131–178. Available at: https://doi.org/10.1007/978-3-031-16968-7_6
  34. Krakowska-Sieprawska, A. et al. (2021) ‘Promising Green Technology in Obtaining Functional Plant Preparations: Combined Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids Isolation from Medicago Sativa Leaves,’ Materials, 14(11), p. 2724. Available at: https://doi.org/10.3390/ma14112724
  35. Kristina, C.V.M., Yusasrini, N.L.A. and Yusa, N.M. (2022) ‘Pengaruh Waktu Ekstraksi Dengan Menggunakan Metode Ultrasonic Assisted Extraction (UAE) Terhadap Aktivitas Antioksidan Ekstrak Daun Duwet (Syzygium cumini),’ Jurnal Ilmu dan Teknologi Pangan (ITEPA), 11(1), pp. 13–31. Available at: https://doi.org/10.24843/itepa.2022.v11.i01.p02
  36. Kunarto, B. et al. (2019) ‘Optimasi Ekstraksi Berbantu Gelombang Ultrasonik pada Biji Melinjo Kerikil (Gnetum gnemon L., ‘Kerikil’) Menggunakan Response Surface Methodology,’ Jurnal Aplikasi Teknologi Pangan, 8(3), pp. 1–8. Available at: https://doi.org/10.17728/jatp.5122
  37. Kurniawan, I. and Zahra, H. (2021) ‘Review: Gallotannins; Biosynthesis, Structure Activity Relationship, Anti-inflammatory and Antibacterial Activity,’ Current Biochemistry, 8(1), pp. 1–16. Available at: https://doi.org/10.29244/cb.8.1.1
  38. Lavilla, I. and Bendicho, C. (2017) ‘Fundamentals of Ultrasound-Assisted Extraction,’ in Water Extraction of Bioactive Compounds. Elsevier, pp. 291–316. Available at: https://doi.org/10.1016/B978-0-12-809380-1.00011-5
  39. Lee, J.-E. et al. (2024) ‘The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review,’ Foods, 13(19), p. 3151. Available at: https://doi.org/10.3390/foods13193151
  40. Li, H.-Z. et al. (2019) ‘Optimization of Ultrasound-assisted Extraction of Procyanidins from Perilla seed Hull and Their Antioxidant Activities in Vitro,’ Food Science and Technology, 39(2), pp. 378–387. Available at: https://doi.org/10.1590/fst.30417
  41. Li, Z. et al. (2024) ‘Study on The Extraction, Purification, Stability, Free Radical Scavenging Kinetics, Polymerization Degree and Characterization of Proanthocyanidins from Pinus koraiensis Seed Scales,’ Food Chemistry, 454(139776). Available at: https://doi.org/10.1016/j.foodchem.2024.139776
  42. Liu, Z. et al. (2017) ‘Efficient Approach for The Extraction of Proanthocyanidins from Cinnamomum longepaniculatum Leaves Using Ultrasonic Irradiation and An Evaluation of Their Inhibition Activity on Digestive Enzymes and Antioxidant Activity in Vitro,’ Journal of Separation Science, 40(15), pp. 3100–3113. Available at: https://doi.org/10.1002/jssc.201700342
  43. Liu, Z. et al. (2021) ‘Cinnamomum camphora Leaves as A Source of Proanthocyanidins Separated using Microwave-assisted Extraction Method and Evaluation of Their Antioxidant Activity in Vitro,’ Arabian Journal of Chemistry, 14(9), p. 103328. Available at: https://doi.org/10.1016/j.arabjc.2021.103328
  44. Llompart, M., Celeiro, M. and Dagnac, T. (2019) ‘Microwave-assisted Extraction of Pharmaceuticals, Personal Care Products and Industrial Contaminants in The Environment,’ TrAC Trends in Analytical Chemistry, 116, pp. 136–150. Available at: https://doi.org/10.1016/j.trac.2019.04.029
  45. Lv, J.-M. et al. (2021) ‘Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi (Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity,’ Antioxidants, 10(8), p. 1317. Available at: https://doi.org/10.3390/antiox10081317
  46. Ma, X. et al. (2014) “Ultrasound-assisted extraction and preliminary purification of proanthocyanidins and chlorogenic acid from almond ( Prunus dulcis ) skin,” Wiley, 37, pp. 1834–1841. Available at: https://doi.org/10.1002/jssc.201400070
  47. Machado, T. de O.X. et al. (2024) ‘Pressurized Liquid Extraction as An Innovative High-yield Greener Technique for Phenolic Compounds Recovery from Grape Pomace,’ Sustainable Chemistry and Pharmacy, 40(101635), pp. 1–12. Available at: https://doi.org/10.1016/j.scp.2024.101635
  48. Maleta, H.S. et al. (2018) ‘Ragam Metode Ekstraksi Karotenoid dari Sumber Tumbuhan dalam Dekade Terakhir (Telaah Literatur),’ Jurnal Rekayasa Kimia & Lingkungan, 13(1), pp. 40–50. Available at: https://doi.org/10.23955/rkl.v13i1.10008
  49. de Menezes Rodrigues, G., Cardozo‐Filho, L. and da Silva, C. (2017) ‘Pressurized Liquid Extraction of Oil from Soybean Seeds,’ The Canadian Journal of Chemical Engineering, 95(12), pp. 2383–2389. Available at: https://doi.org/10.1002/cjce.22922
  50. Mungwari, C.P. et al. (2025) ‘Conventional and Modern Techniques for Bioactive Compounds Recovery from Plants: Review,’ Scientific African, 27(e02509), pp. 1–23. Available at: https://doi.org/10.1016/j.sciaf.2024.e02509
  51. Nabti, B., Bourkaib, S. and Boukhalfa, D. (2023) ‘Phytochemical and Biological Investigation of Leaf Extracts of Phlomis crinita Cav. from Northern Algeria,’ GSC Biological and Pharmaceutical Sciences, 22(2), pp. 20–29. Available at: https://doi.org/10.30574/gscbps.2023.22.2.0050
  52. Nasseri, M.A. et al. (2019) ‘Phytochemical and Antioxidant Studies of Cleome heratensis (Capparaceae) Plant Extracts,’ Bioresources and Bioprocessing, 6(5), pp. 1–10. Available at: https://doi.org/10.1186/s40643-019-0240-1
  53. Neto, R.T. et al. (2021) ‘Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace,’ Molecules, 27(1), p. 246. Available at: https://doi.org/10.3390/molecules27010246
  54. Nithya, S. et al. (2023) ‘Microwave-Assisted Extraction of Phytochemicals,’ in Drug Discovery and Design Using Natural Products. Cham: Springer Nature Switzerland, pp. 209–238. Available at: https://doi.org/10.1007/978-3-031-35205-8_8
  55. Panda, D. and Manickam, S. (2019) ‘Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives,’ Applied Sciences, 9(4), p. 766. Available at: https://doi.org/10.3390/app9040766
  56. Plaza, M. and Turner, C. (2015) ‘Pressurized Hot Water Extraction of Bioactives,’ TrAC Trends in Analytical Chemistry, 71, pp. 39–54. Available at: https://doi.org/10.1016/j.trac.2015.02.022
  57. Da Porto, C., Natolino, A. and Scalet, M. (2018) ‘Ultrasound-assisted Extraction of Proanthocyanidins from Vine Shoots of Vitis vinifera,’ Journal of Wine Research, 29(4), pp. 290–301. Available at: https://doi.org/10.1080/09571264.2018.1536650
  58. Pozos, G.I.P. et al. (2020) ‘Antioxidant Capacity and Antigenotoxic Effect of Hibiscus sabdariffa L. Extracts Obtained with Ultrasound-Assisted Extraction Process,’ Applied Sciences, 10(560), pp. 1–13. Available at: https://doi.org/10.3390/app10020560
  59. Rauf, A. et al. (2019) ‘Proanthocyanidins: A Comprehensive Review,’ Biomedicine & Pharmacotherapy, 116(108999), pp. 1–6. Available at: https://doi.org/10.1016/j.biopha.2019.108999
  60. Raut, P. et al. (2015) ‘Emerging Pressurized Liquid Extraction (PLE) Techniques as an Innovative Green Technologies for the Effective Extraction of the Active Phytopharmaceuticals,’ Research Journal of Pharmacy and Technology, 8(6), pp. 800–810. Available at: https://doi.org/10.5958/0974-360X.2015.00129.8
  61. Rutkowska, M., Namieśnik, J. and Konieczka, P. (2017) ‘Ultrasound-Assisted Extraction,’ in The Application of Green Solvents in Separation Processes. Elsevier, pp. 301–324. Available at: https://doi.org/10.1016/B978-0-12-805297-6.00010-3
  62. Sakti, A.S. et al. (2025) ‘Herb–Drug Interactions Between Common Indonesian Medicinal Plants and Cardiovascular Medications: A Narrative Review,’ Journal of Health Sciences, Medicine, Biotechnology, and Pharmaceutical Research, 1(2), pp. 81–97. Available at: https://doi.org/10.63142/jhsmbp.v1i2.263
  63. Sakti, A.S., Rahmawati, V.A.E. and Fazadini, S.Y. (2024) ‘Pengaruh Pemilihan Metode Ekstraksi Infusa dan Dekokta terhadap Kadar Total Senyawa Fenolik Ekstrak Tanaman Krokot,’ Jurnal Ilmiah Farmasi Farmasyifa, 7(2), pp. 228–249. Available at: https://doi.org/10.29313/jiff.v7i2.3256
  64. Sánchez‐Camargo, A.P. et al. (2020) ‘Novel Extraction Techniques for Bioactive Compounds from Herbs and Spices,’ in Herbs, Spices and Medicinal Plants. Wiley, pp. 95–128. Available at: https://doi.org/10.1002/9781119036685.ch5
  65. Sasongko, A. et al. (2018) ‘Aplikasi Metode Nonkonvensional Pada Ekstraksi Bawang Dayak,’ JTT (Jurnal Teknologi Terpadu), 6(1), p. 8. Available at: https://doi.org/10.32487/jtt.v6i1.433
  66. Shawky, E., Zhu, W. and Tian, J. (2025) ‘A Review of Innovative Extraction Technologies for Protein Recovery from Plant-based by-products: a Step Toward Zero-waste Processing,’ International Journal of Biological Macromolecules, 315(1), p. 144301. Available at: https://doi.org/10.1016/j.ijbiomac.2025.144301
  67. Shen, L. et al. (2023) ‘A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies,’ Ultrasonics Sonochemistry, 101, p. 106646. Available at: https://doi.org/10.1016/j.ultsonch.2023.106646
  68. Shinwari, K.J. (2021) ‘Emerging Technologies for The Recovery of Bioactive Compounds from Saffron Species,’ in Saffron. Elsevier, pp. 143–182. Available at: https://doi.org/10.1016/B978-0-12-821219-6.00004-X
  69. Shivakumar, S. et al. (2024) ‘Cell Walls of Lipid-Rich Microalgae: A Comprehensive Review on Characterisation, Ultrastructure, and Enzymatic Disruption,’ Fermentation, 10(12), p. 608. Available at: https://doi.org/10.3390/fermentation10120608
  70. Siddique, M., Rashid, R. and Ali, A. (2025) ‘Fundamentals of Acoustic Cavitation, Ultrasound-assisted Processes, and Sonochemistry,’ in Modeling and Simulation of Sono-Processes. Elsevier, pp. 3–17. Available at: https://doi.org/10.1016/B978-0-443-23651-8.00001-2
  71. Smeriglio, A. et al. (2017) ‘Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects,’ British Journal of Pharmacology, 174(11), pp. 1244–1262. Available at: https://doi.org/10.1111/bph.13630
  72. Stanković, M. et al. (2022) ‘Bioactive Compounds from Taraxacum officinale Extracts obtained by Optimized Ultrasound-assisted Extraction,’ Kragujevac Journal of Science, 44, pp. 169–187. Available at: https://doi.org/10.5937/KgJSci2244169S
  73. Streimikyte, P., Viskelis, P. and Viskelis, J. (2022) ‘Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications,’ International Journal of Molecular Sciences, 23(4), p. 2359. Available at: https://doi.org/10.3390/ijms23042359
  74. Tamkut, L. et al. (2020) ‘The Journal of Supercritical Fluids Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction,’ The Journal of Supercritical Fluids, 159. Available at: https://doi.org/10.1016/j.supflu.2020.104755
  75. Tang, J. et al. (2024) ‘Mechanistic and Synergistic Aspects of Ultrasonics and Hydrodynamic Cavitation for Food Processing,’ Critical Reviews in Food Science and Nutrition, 64(24), pp. 8587–8608. Available at: https://doi.org/10.1080/10408398.2023.2201834
  76. Unusan, N. (2020) ‘Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry,’ Journal of Functional Foods, 67, p. 103861. Available at: https://doi.org/10.1016/j.jff.2020.103861
  77. Wadli and Hasdar, M. (2021) ‘Ekstraksi Beras Hitam Sirampong berbantu Gelombang Mikro (Microwave Assisted Extraction (MAE)),’ Jurnal Pengolahan Pangan, 6(2), pp. 49–53. Available at: https://doi.org/10.31970/pangan.v6i2.49
  78. Wang, T. et al. (2018) ‘Ultrasound-negative Pressure Cavitation Extraction of Phenolic Compounds from Blueberry Leaves and Evaluation of Its DPPH Radical Scavenging Activity,’ Food and Bioproducts Processing, 108, pp. 69–80. Available at: https://doi.org/10.1016/j.fbp.2018.01.003
  79. Winata, E.W. and Yunianta (2015) ‘Ekstraksi Antosianin Buah Murbei (Morus alba L.) Metode Ultrasonic Bath (Kajian Waktu dan Rasio Bahan: Pelarut),’ Jurnal Pangan dan Agroindustri, 3(2), pp. 773–783
  80. Wirajana, I.N. et al. (2019) ‘Suhu dan Waktu Optimum Proses Ekstraksi Antosianin Dalam Ubi Jalar Ungu (Ipomoea batatas L.) dengan α-L-Arabinofuranosidase,’ Jurnal Kimia, 13(1), pp. 88–94. Available at: https://doi.org/10.24843/JCHEM.2019.v13.i01.p14
  81. Yang, L. et al. (2018) ‘Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications,’ BioMed Research International, 2018, pp. 1–11. Available at: https://doi.org/10.1155/2018/8584136
  82. Yeasmen, N. and Orsat, V. (2023) ‘Green Extraction and Characterization of Leaves Phenolic Compounds: A Comprehensive Review,’ Critical Reviews in Food Science and Nutrition, 63(21), pp. 5155–5193. Available at: https://doi.org/10.1080/10408398.2021.2013771
  83. Zahari, N.A.A.R. et al. (2020) ‘Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization,’ Processes, 8(3), p. 322. Available at: https://doi.org/10.3390/pr8030322
  84. Zhang, M. et al. (2023) ‘Extraction and Analysis of Chemical Compositions of Natural Products and Plants,’ Separations, 10(12), p. 598. Available at: https://doi.org/10.3390/separations10120598
  85. Zhang, Q.-W., Lin, L.-G. and Ye, W.-C. (2018) ‘Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review,’ Chinese Medicine, 13(20), pp. 1–26. Available at: https://doi.org/10.1186/s13020-018-0177-x
  86. Zhang, Y. et al. (2019) ‘Proanthocyanidin Encapsulated in Ferritin Enhances Its Cellular Absorption and Antioxidant Activity,’ Journal of Agricultural and Food Chemistry, 67(41), pp. 11498–11507. Available at: https://doi.org/10.1021/acs.jafc.9b03903
  87. Zhao, C. et al. (2020) ‘An Improved Method to Obtain Essential Oil, Flavonols and Proanthocyanidins from Fresh Cinnamomum japonicum Sieb. Leaves using Solvent-Free Microwave-assisted Distillation Followed by Homogenate Extraction,’ Arabian Journal of Chemistry, 13(1), pp. 2041–2052. Available at: https://doi.org/10.1016/j.arabjc.2018.03.002
  88. Zulfina, T., Safriani, N. and Husna, N. El (2018) ‘Ekstraksi Antosianin dari Buah Senggani (Melastoma polyanthum BI.) dengan Variasi Rasio Bahan dengan Pelarut dan Konsentrasi Asam Sitrat,’ Jurnal Ilmiah Mahasiswa Pertanian, 3(4), pp. 835–839. Available at: https://doi.org/10.17969/jimfp.v3i4.5471

Last update:

No citation recorded.

Last update:

No citation recorded.