skip to main content

ANALISIS PERUBAHAN KERAPATAN TANAMAN MANGROVE TERHADAP PERUBAHAN GARIS PANTAI DI KABUPATEN PATI DENGAN METODE PENGINDERAAN JAUH DAN APLIKASI DIGITAL SHORELINE ANALYSIS SYSTEM (DSAS) TAHUN 2017-2020

Departemen Teknik Geodesi-Fakultas Teknik Universitas Diponegoro, Indonesia

Received: 13 Oct 2020; Published: 4 Dec 2020.

Citation Format:
Abstract
Pati Regency has a coastline of 60 km with a characteristic muddy beach. The coastal community in Pati Regency is very dependent on coastal and marine products, so it needs to be preserved. A decrease in coastal environment quality can be indicated by looking at the mangrove of quality plants. The Government of Pati Regency carries out regular mangrove planting to improve the quality of life in the coastal environment, but there is no supervision. This study uses remote sensing technology and GIS to determine the relationship between changes in mangrove plant density and changes in coastlines in Pati Regency from 2017 to 2020. This study uses remote sensing methods using the NDWI water index transformation method to determine the shoreline from Sentinel-2-year image. 2017-2020, MSL reduction using DEMNAS and MSL, then processed with a Geographical Information System using DSAS to obtain the results of shoreline changes (NSM) as well as guided classifications for land cover and vegetation indexes NDVI and GNDVI which are used to map mangrove vegetation density on the coast of the Pati Regency. The results showed that the average change in the coastline in Pati Regency has increased by 22,260 m. Changes in the area of mangroves on the coast of Pati Regency have increased by 86.634 hectares. The results also showed that the relationship between changes in mangrove density and shoreline changes on the coast of Pati Regency used simple linear regression with the coefficient of determination (R2) of 0,089 and the correlation coefficient (R) of 0,299. These results indicate a correlation enough. The calculation of the F test to determine changes in mangrove density with changes in shoreline has a significant effect, so that if the value of mangrove density is higher, changes in shoreline will tend to increase (accretion).
Fulltext View|Download

Article Metrics:

  1. Badan Informasi Geospasial. (2018). DEMNAS. http://tides.big.go.id/
  2. Cham, D. D., Son, N. T., Minh, N. Q., Thanh, N. T., dan Dung, T. T. (2020). An Analysis of Shoreline Changes Using Combined Multitemporal Remote Sensing and Digital Evaluation Model. Civil Engineering Journal, 6(1), 1–10. https://doi.org/10.28991/cej-2020-03091448
  3. Congalton, Russel G, dan Green, K. (2008). Assessing the Accuracy of Remotely Sensed Data : Principles and Practices (2nd Editio). CRC Press, Taylor and Francis Group
  4. Departemen Kehutanan. (2005). Pedoman inventarisasi dan identifikasi lahan kritis mangrove. 13
  5. Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., dan Li, X. (2016). Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040354
  6. ESA. (2019). Sentinel-2. sentinel.esa.int
  7. Gitelson, A. A., Kaufman, Y. J., dan Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7
  8. Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., dan Farris, A. S. (2018). Digital Shoreline Analysis System ( DSAS ) Version 5.0 User Guide. Open-File Report 2018-1179, 126
  9. Indarto. (2017). Pengindraan Jauh Metode Analisis dan Interpretasi Citra Satelit. Andi
  10. Masitha, M. (2017). Pendugaan Kerapatan Mangrove dengan Algoritma Normalized Difference Vegetation Index (NDVI) Dan Green Normalized Difference Vegetation Index (GNDVI). Bogor Agricultural
  11. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  12. Purwanto, A. D., dan Asriningrum, W. (2019). Identification of Mangrove Forests Using Multispectral Satellite Imageries. International Journal of Remote Sensing and Earth Sciences (IJReSES), 16(1), 63. https://doi.org/10.30536/j.ijreses.2019.v16.a3097
  13. Sandy, I. M. (1996). Pantai dan Wilayah Pesisir. Geografi Universitas Indonesia
  14. Sarwono, J., dan Budiono, H. (2012). Statistik Terapan Aplikasi Untuk Riset Skripsi, Tesis dan Disertasi (Menggunakan SPSS, AMOS, dan Excel). PT. Elex Media Komputindo
  15. Tempfli, K. (1991). DTM and Differential Modeling, dalam Suharyadi, R., dkk. 2012. Petunjuk Praktikum Sistem Informasi Geografis : Pedoman Spatial. Univesitas Gajah Mada

Last update:

No citation recorded.

Last update:

No citation recorded.