skip to main content

SPATIOTEMPORAL ANALYSIS OF MANGROVE DENSITY DYNAMICS USING SENTINEL-2 IMAGERY AND CLOUD COMPUTING BASED MACHINE LEARNING ALGORITHMS (CASE STUDY: DEMAK REGENCY)

1Department of Geodetic Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

2Badan Informasi Geospasial, Indonesia, Indonesia

Received: 12 Aug 2025; Accepted: 26 Nov 2025; Available online: 4 Dec 2025; Published: 18 Dec 2025.

Citation Format:
Abstract

Mangrove forests are vital coastal ecosystems that protect shorelines and help maintain coastal environmental balance. Mangrove forests undergo changes every year due to degradation or restoration, so monitoring needs to be carried out. This study analyzes the spatiotemporal dynamics of mangrove density in Demak Regency from 2020 to 2025 using Sentinel-2 imagery and the CART (Classification and Regression Tree) algorithm processed through the Google Earth Engine (GEE) platform. Six spectral indices were used as classification inputs, namely NDVI, NDWI, MVI, MI, AMMI, and CMRI. AMMI is the best index in identifying mangroves as a whole, both in narrow and large areas. Based on classification, the mangrove cover area has been restored or significantly increased from 1644.011 ha in 2020 to 2530.522 ha in 2025. The largest increase occurred in the high canopy density class of 960.157 ha. Meanwhile, the medium and low canopy density classes showed a decrease in area. Accuracy assesment showed an overall accuracy value of 99.92% for 2020 and 99.91% for 2025, with kappa accuracy above 97% in both years. These results show that the classification method with the support of cloud computing can be relied on in spatiotemporal monitoring of mangrove changes efficiently and accurately.

 

Keywords:  Mangrove, Sentinel-2, Machine Learning, Classification and Regression Tree, Cloud Computing

Fulltext View|Download

Article Metrics:

  1. Abdelsamie, E. A., Mustafa, A. rahman A., El-Sorogy, A. S., Maswada, H. F., Almadani, S. A., Shokr, M. S., El-Desoky, A. I., & Meroño de Larriva, J. E. (2024). Current and Potential Land Use/Land Cover (LULC) Scenarios in Dry Lands Using a CA-Markov Simulation Model and the Classification and Regression Tree (CART) Method: A Cloud-Based Google Earth Engine (GEE) Approach. Sustainability (Switzerland), 16(24). https://doi.org/10.3390/su162411130
  2. Abedinia, A., & Seydi, V. (2024). Building semi-supervised decision trees with semi-cart algorithm. International Journal of Machine Learning and Cybernetics, 15(10), 4493–4510. https://doi.org/10.1007/s13042-024-02161-z
  3. Agduma, A. R., Tanalgo, K. C., Millondaga, A. M., Respicio, J. M. V., Dela Cruz, K. C., Lidasan, A. K., Terante, R. J., & Cao, K. F. (2024). Knowledge shortfalls and research priorities for Philippine mangroves in the fast-changing world. Ocean and Coastal Management, 255(June), 107211. https://doi.org/10.1016/j.ocecoaman.2024.107211
  4. Amalia, A. V., Fariz, T. R., Lutfiananda, F., Ihsan, H. M., Atunnisa, R., & Jabbar, A. (2024). Comparison of Swat-Based Ecohydrological Modeling in the Rawa Pening Catchment Area, Indonesia. Jurnal Pendidikan IPA Indonesia, 13(1), 1–11. https://doi.org/10.15294/jpii.v13i1.45277
  5. Amelia, R., & Darmansyah. (2023). Potensi Google Earth Engine untuk Identifikasi Objek Wilayah Perairan pada Citra Satelit Sentinel-2. EQUIVA JOURNAL Journal of Mathematics & Information Technology, 01, 19–24
  6. Baloloy, A. B., Blanco, A. C., Rhommel, R. R. C. R., & Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 95–117
  7. Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., & Murray, N. J. (2022). Global Mangrove Extent Change 1996 – 2020: Global Mangrove. Remote Sensing, 14(3657), 1–32
  8. Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. In Mapping Science Series (3rd ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9780429052729
  9. Ellison, J. C., Buffington, K. J., Thorne, K. M., Gesch, D., Irwin, J., & Danielson, J. (2022). Elevations of mangrove forests of Pohnpei, Micronesia. Estuarine, Coastal and Shelf Science, 268, 107780. https://doi.org/https://doi.org/10.1016/j.ecss.2022.107780
  10. Gao, B. C. (1996). NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. In FDA Regulatory Affairs: (3rd ed.). FDA Regulatory Affairs: https://doi.org/10.1201/b16471-3
  11. Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., Samal, R. N., Pattnaik, A. K., & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5(September), 1129–1139. https://doi.org/10.1016/j.mex.2018.09.011
  12. Harefa, M. S., Pasaribu, P., Alfatha, R. R., Benny, X., & Irfani, Y. (2023). Identifikasi Pemanfaatan Hutan Mangrove Oleh Masyarakat Studi Kasus Kecamatan Teluk Mengkudu Kabupaten Serdang Bedagai. Journal of Laguna Geography, 02(pemanfaatan hutan mangrove), 1–7
  13. Irsadi, A., Anggoro, S., Soeprobowati, T. R., Helmi, M., & Khair, A. S. E. (2019). Shoreline and mangrove analysis along semarang-demak, Indonesia for sustainable environmental management. Jurnal Pendidikan IPA Indonesia, 8(1), 1–11. https://doi.org/10.15294/jpii.v8i1.17892
  14. Jaelani, L. M., Safitri, D. S., Kristian, N. E., Alina, A. N., Syariz, M. A., Sanjaya, H., & Rasam, A. R. A. (2025). Mapping Mangrove Species Distribution and Density Using Sentinel-2 Satellite Imagery and Spectral Analysis. Journal of Human, Earth, and Future, 6(1), 1–11. https://doi.org/10.28991/HEF-2025-06-01-01
  15. Kinasih, P. I., & Purnaweni, H. (2019). Pemanfaatan mangrove untuk pemberdayaan masyarakat pesisir. Jurnal Collaborative Governance Dalam Pengembangan Pariwisata Di Indonesia Rekreasi, 1(1), 71–78
  16. Li, C., Cai, R., Tian, W., Yuan, J., & Mi, X. (2023). Land Cover Classification by Gaofen Satellite Images Based on CART Algorithm in Yuli County, Xinjiang, China. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032535
  17. Lu, Y., & Wang, L. (2022). The current status, potential and challenges of remote sensing for large-scale mangrove studies. International Journal of Remote Sensing, 43(18), 6824–6855. https://doi.org/10.1080/01431161.2022.2145584
  18. Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239–250. https://doi.org/10.26833/ijeg.1118542
  19. Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex and Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
  20. Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing. National Institute of Standards and Technology
  21. Muraina, I. O. (2022). Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts. 7th INTERNATIONAL MARDIN ARTUKLU SCIENTIFIC RESEARCHES CONFERENCE, February, 496–504. https://www.researchgate.net/publication/358284895
  22. Muskananfola, M. R., Supriharyono, & Febrianto, S. (2020). Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Regional Studies in Marine Science, 34, 101060. https://doi.org/10.1016/j.rsma.2020.101060
  23. Pertiwi, A. P., Lee, C. B., & Traganos, D. (2021). Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine. Frontiers in Marine Science, 8(September). https://doi.org/10.3389/fmars.2021.699055
  24. Purwanto, A. D., Asriningrum, W., Winarso, G., & Parwati, E. (2014). Analisis Sebaran dan Kerapatan Mangrove Menggunakan Citra Landsat 8 di Segara Anakan, Cilacap. Seminar Nasional Penginderaan Jauh 2014, 21 April 2, 232–241
  25. Rouse, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In NASA Special Publication (Vol. 351). NASA
  26. Sang, X., Guo, Q., Wu, X., Fu, Y., Xie, T., He, C., & Zang, J. (2019). Intensity and Stationarity Analysis of Land Use Change Based on CART Algorithm. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-48586-3
  27. Sentoso, M. S., Ardi, A. C., Rahmasari, N. A., Millenia, R. A., Bangun, J. A. C., Puspitasari, A. D., Budi, N. P. N., Putra, R. W., Jovenski, T. W., Dampi, A., & Kristianto, I. I. (2021). Pemanfaatan Buah Mangrove menjadi Olahan Makanan/Minuman di Desa Jangkaran, Kulon Progo. Jurnal Atma Inovasia, 1(1), 20–25. https://doi.org/10.24002/jai.v1i1.3926
  28. Suyarso, & Avianto, P. (2022). AMMI Automatic Mangrove Map and Index: Novelty for Efficiently Monitoring Mangrove Changes with the Case Study in Musi Delta, South Sumatra, Indonesia. International Journal of Forestry Research, 2022. https://doi.org/10.1155/2022/8103242
  29. Wei, S., Zhang, H., & Ling, J. (2025). A review of mangrove degradation assessment using remote sensing: advances, challenges, and opportunities. GIScience and Remote Sensing, 62(1). https://doi.org/10.1080/15481603.2025.2491920
  30. Widjonarko, Purnaweni, H., & Maryono. (2025). Spatio-Temporal pattern of coastal flooding due to microclimate change and mangrove deforestation in Semarang and Demak Coastal Area. E3S Web of Conferences, 605. https://doi.org/10.1051/e3sconf/202560503012
  31. Widodo, J., Trihatmoko, E., Khomarudin, M. R., Ardha, M., Nugroho, U. C., Setyaningrum, N., Dinanta, G. P., Arief, R., Setiyoko, A., Novresiandi, D. A., Handika, R., Priyatna, M., Sobue, S., Sarah, D., & Hermawan, W. (2024). Dynamic Geo-Visualization of Urban Land Subsidence and Land Cover Data Using PS-InSAR and Google Earth Engine (GEE) for Spatial Planning Assessment. Urban Science, 8(4). https://doi.org/10.3390/urbansci8040234
  32. Winarso, G., & Purwanto, A. D. (2017). Evaluation of Mangrove Damage Level Based on Landsat 8 Image. International Journal of Remote Sensing and Earth Sciences (IJReSES), 11(2), 105. https://doi.org/10.30536/j.ijreses.2014.v11.a2608

Last update:

No citation recorded.

Last update:

No citation recorded.