1Department of Geodetic Engineering, Diponegoro University, Prof. Sudarto, SH Street, Tembalang, Semarang, Indonesia 50275, Indonesia
2Sekolah Tinggi Pertanahan Nasional (STPN), Indonesia
BibTex Citation Data :
@article{ELIPSOIDA28716, author = {Yolanda Nababan and Rizki Putri and Nurhadi Bashit and Firman Hadi and Taufiq Ihsanudin}, title = {COMPARATIVE STUDY OF LAND SURFACE TEMPERATURE ON LANDSAT 8 AND HLS-L30 USING MONO WINDOW AND SPLIT WINDOW ALGORITHMS (CASE STUDY: WKP MOUNT UNGARAN)}, journal = {Elipsoida : Jurnal Geodesi dan Geomatika}, volume = {8}, number = {2}, year = {2025}, keywords = {}, abstract = { Advancements in remote sensing technology have enabled the use of satellite imagery, such as Landsat 8 and HLS-L30, for the spatial and temporal estimation of Land Surface Temperature (LST) with improved resolution. In the context of geothermal exploration, the availability of thermal infrared bands in these datasets facilitates more efficient and cost-effective mapping and identification of surface temperature anomalies, particularly across large and inaccessible areas. This study aims to compare LST estimations derived from Landsat 8 and HLS-L30 imagery using the Mono Window Algorithm (MWA) and Split Window Algorithm (SWA) at 18 geothermal manifestation points within the Mount Ungaran Geothermal Working Area (WKP). A Focal Statistic process was applied to 20 LST datasets, resulting in a total of 100 LST layers. From each layer, LST values were extracted at the 18 manifestation points, producing a total of 1,800 data points. A binary logistic regression analysis was conducted using these LST values alongside those from 20 randomly selected comparison points. The results indicate that the median LST derived from HLS-L30 imagery using the Split Window Algorithm with the minimum Focal Statistic yielded the most optimal performance in classifying geothermal manifestation presence. This method achieved statistical significance (p = 0.028), indicating its capability to effectively distinguish between manifestation and non-manifestation points. However, the pseudo-R² value of 0.107 suggests that the model explains approximately 11% of the variance in the data. These findings underscore the potential application of satellite-based LST analysis in the early detection and assessment of geothermal surface anomalies within WKPs. Keywords : Geothermal, LST, Landsat, HLS-L30, Ungaran}, issn = {2621-9883}, pages = {97--109} doi = {10.14710/elipsoida.2025.28716}, url = {https://ejournal2.undip.ac.id/index.php/elipsoida/article/view/28716} }
Refworks Citation Data :
Advancements in remote sensing technology have enabled the use of satellite imagery, such as Landsat 8 and HLS-L30, for the spatial and temporal estimation of Land Surface Temperature (LST) with improved resolution. In the context of geothermal exploration, the availability of thermal infrared bands in these datasets facilitates more efficient and cost-effective mapping and identification of surface temperature anomalies, particularly across large and inaccessible areas. This study aims to compare LST estimations derived from Landsat 8 and HLS-L30 imagery using the Mono Window Algorithm (MWA) and Split Window Algorithm (SWA) at 18 geothermal manifestation points within the Mount Ungaran Geothermal Working Area (WKP). A Focal Statistic process was applied to 20 LST datasets, resulting in a total of 100 LST layers. From each layer, LST values were extracted at the 18 manifestation points, producing a total of 1,800 data points. A binary logistic regression analysis was conducted using these LST values alongside those from 20 randomly selected comparison points. The results indicate that the median LST derived from HLS-L30 imagery using the Split Window Algorithm with the minimum Focal Statistic yielded the most optimal performance in classifying geothermal manifestation presence. This method achieved statistical significance (p = 0.028), indicating its capability to effectively distinguish between manifestation and non-manifestation points. However, the pseudo-R² value of 0.107 suggests that the model explains approximately 11% of the variance in the data. These findings underscore the potential application of satellite-based LST analysis in the early detection and assessment of geothermal surface anomalies within WKPs.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
Starting from 2021, the author(s) whose article is published in the Elipsoida : Jurnal Geodesi dan Geomatika attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to Elipsoida : Jurnal Geodesi dan Geomatika, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Elipsoida : Jurnal Geodesi dan Geomatika will not be held responsible for anything arising because of the writer's internal dispute. Elipsoida : Jurnal Geodesi dan Geomatika will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Elipsoida : Jurnal Geodesi dan Geomatika allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Elipsoida : Jurnal Geodesi dan Geomatika to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.
Editorial Office of Elipsoida : Jurnal Geodesi dan Geomatika View statisticsThe Old Dean Building (2nd Floor) Faculty of Engineering, Diponegoro UniversityJl Prof Soedarto SH, Tembalang. Semarang, Indonesia, 50275Email : redaksi.elipsoida@ft.undip.ac.id, Telephone : 081802403435