skip to main content

Modeling of tsunami run-up using terrain model data based on photogrammetry processing product (case study at Way Muli Village, Rajabasa, South Lampung)

1Research And Innovation Center for Geospatial Information Science, Institut Teknologi Sumatera, Lampung, 35365, Indonesia, Indonesia

2Remote Sensing and Photogrammetry Research Group, Geomatics Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia, Indonesia

3Student at Geomatics Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia, Indonesia

4 Geodesy, Surveying, and Hydrography Research Group, Geomatics Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia, Indonesia

5 Geoinformatics and Cadastre Research Group, Geomatics Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia, Indonesia

View all affiliations
Received: 16 Jun 2021; Revised: 29 Aug 2021; Accepted: 31 Aug 2021; Published: 15 Oct 2021.

Citation Format:
Abstract

Photogrammetry has become a trend in large-scale mapping today. The ability to produce large-scale geospatial products in a relatively short time and low cost is very beneficial for mapping. The ability of high temporal and spatial resolution also makes photogrammetry used in the disaster mapping process. In this study, the DEM approach from photogrammetry was used for input data in tsunami run-up modeling activities in Way Muli Village. High temporal and spatial capabilities are utilized for the production of surface roughness and elevation which are key parameters for rigorous inundation modeling. The modeled inundation results show that the run-up limit achieved in residential areas is on the main road with a maximum distance of inundation from the shoreline is an average of 80 m. The results obtained can be used by the village government to preparedness in dealing with the tsunami.

Fulltext View|Download

Article Metrics:

  1. Arbad, A. P., Takeuchi, W., Jonathan, S., Jamilah, M., Ardy, A., & Meimuna, C. (2019). Western lampung probabilistic tsunami hazard model: investigations by aerial photogrammetry and remote sensing data. The 40th Asian Conference on Remote Sensing. Daejeon, Korea
  2. Bandrova, T., Zlatanova, S., & Konecny, M. (2012). Three-dimensional maps for disaster management. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (July). https://doi.org/10.5194/isprsannals-I-4-245-2012
  3. Barazzetti, L., Brumana, R., Oreni, D., Previtali, M., & Roncoroni, F. (2014). True-Orthophoto Generation From Uav Images : Implementation Of A Combined Photogrammetric And Computer Vision Approach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II(June), 23–25. https://doi.org/10.5194/isprsannals-II-5-57-2014
  4. Berryman, K. (2005). Review of Tsunami Hazard and Risk in New Zealand. New Zealand: Institute of Geological & Nuclear Sciences
  5. BMKG. (2019). Katalog Tsunami Indonesia Tahun 416-2018. Jakarta Pusat, DKI Jakarta: Pusat Gempabumi dan Tsunami, Kedeputian Bidang Geofisika, BMKG
  6. BNPB. (2016). Risiko Bencana Indonesia. Badan Nasional Penanggulangan Bencana Indonesia
  7. Carter, W. N. (2008). Disaster Management. Manila, Philippines: Asian Development Bank
  8. Coppola, D. P. (2015). Introduction to International Disaster Management (3rd ed.). Oxford, UK: Butterworth-Heinemann
  9. Everaerts, J. (2008). The use of unmanned aerial vehicles (uavs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(Part B1), 1187–1192
  10. Fleury, J. T., Brunier, G., Fleury, J., Anthony, E. J., Gardel, A., & Dussouillez, P. (2016). Structure-from-Motion photogrammetry for high-resolution coastal and fluvial geomorphic surveys Geomorphology Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys : Examples from an embayed rotating beach. Geomorphology, 261(May), 76–88. https://doi.org/10.1016/j.geomorph.2016.02.025
  11. Gomez, C., & Purdie, H. (2016). UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Geoenvironmental Disasters. https://doi.org/10.1186/s40677-016-0060-y
  12. Habib, A. F., Kersting, J., McCaffrey, T. M., & Jarvis, A. M. Y. (2008). Integration of lidar and airborne imagery for realistic visualization of 3D urban environments. Proceedings of the International Society for Photogrammetry, Remote Sensing and Spatial Information Sciences,(ISPRS Congress), 617–623
  13. Jarvis, A. M. Y. (2008). Integration of Photogrammetric and LIDAR Data for Accurate Reconstruction And Visualization of Urban Environments. University of Calgary
  14. Kasser, M., & Egels, Y. (2002). Digital Photogrammetry. London: Taylor & Francis
  15. Kraus, K. (2007). Photogrammetry (2nd ed.). Vienna: de Gruyter Textbook
  16. Linder, W. (2006). Digital photogrammetry (3rd ed.). Jerman: Springer
  17. Marfai, M. A., Fatchurohman, H., & Cahyadi, A. (2019). An Evaluation of Tsunami Hazard Modeling in Gunungkidul Coastal Area using UAV Photogrammetry and GIS . Case Study : Drini Coastal Area. ICENIS, 5
  18. Niesen, M. (2010). Introduction to Small-Format Aerial Photography. Nineteenth Century, (September 2008), 1–13. https://doi.org/10.1016/B978-0-444-53260-2.10001-8
  19. Shi, P. (2019). Disaster Risk Science. China: Springer
  20. Tomaszewski, B. (2014). Geographic Information Systems (GIS) for Disaster Management. Boca Raton: CRC Press
  21. Uysal, M., Toprak, A. S., & Polat, N. (2015). Dem generation with uav photogrammetry and accuracy analysis in sahitler hill. MEASUREMENT, (June). https://doi.org/10.1016/j.measurement.2015.06.010
  22. Wolf, P., DeWitt, B., Wilkinson, B., & Wolf. (2014). Elements of Photogrammetry with Application in GIS (4th ed.). New York: McGraw-Hill Education

Last update:

No citation recorded.

Last update:

No citation recorded.