skip to main content

Pengujian Potensi Cairan Omasum Sapi untuk Ketercernaan Tiga Jenis Bahan Organik sebagai Sumber Bioetanol Generasi Ke-2

Program Studi Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang, Semarang 50275, Indonesia

Open Access Copyright 2024 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Cairan omasum sapi mengandung berbagai microbiome yang dapat mendelignifikasi dan menghidrolisis selulosa sehingga berpotensi digunakan dalam pembuatan bioetanol G2 dari daun mangga, daun pisang, dan kapas. Penelitian ini bertujuan untuk menganalisis perbedaan pH, kadar gula, keanekaragaman microbiome, perubahan struktur anatomi daun mangga, daun pisang, dan kapas yang direndam dalam cairan omasum. Penelitian menggunakan Rancangan Acak Lengkap dengan 6 perlakuan, yaitu daun mangga omasum, kontrol daun mangga, daun pisang omasum, kontrol daun pisang, kapas omasum, dan kontrol kapas, masing-masing perlakuan dengan 3 ulangan. Parameter yang diamati adalah pH, kadar gula, dan microbiome yang dianalisis One-Way ANOVA dilanjutkan uji Duncan, serta struktur anatomi ketercernaan dianalisis secara kualitatif. Hasil penelitian menunjukkan cairan omasum sapi meningkatkan pH daun mangga, daun pisang, dan kapas dengan kadar gula daun mangga 1,33%, daun pisang 0% dan kapas 0,08%. Microbiome daun mangga omasum sebanyak 2,66 spesies, daun pisang omasum 3,58 spesies, dan kapas omasum 4,08 spesies. Ketercernaan anatomi daun mangga akibat cairan omasum ditandai adanya ruang antar sel pada parenkim, pada  daun pisang tidak dijumpai stomata dan sel epidermis membesar, pada kapas lebih tipis dan tanpa torsi.

 

Cow omasum fluid contains various microbiomes that can delignify and hydrolyze cellulose so it has potential to be used in making G2 bioethanol from mango leaves, banana leaves, and cotton. This research aims to analyze differences pH, sugar content, microbiome diversity, anatomical structure changes of mango leaves, banana leaves and cotton soaked in omasum fluid. The research used a Completely Randomized Design with 6 treatments are mango omasum leaves, control mango leaves, banana leaves omasum, control banana leaves, cotton omasum, and control cotton, each treatment with 3 replications. The parameters observed were pH, sugar content and microbiome which were analyzed by One-Way ANOVA followed by Duncan's test, and the anatomical structure of digestibility was analyzed qualitatively. The research results showed that cow omasum fluid increased the pH of mango leaves, banana leaves and cotton with the sugar content of mango leaves 1.33%, banana leaves 0% and cotton 0.08%. The microbiome of mango omasum leaves was 2.66 species, banana leaf omasum 3.58 species, and cotton omasum 4.08 species. The anatomical digestibility were caused by omasum liquid of mango leaves is characterized by intercellular spaces in the parenchyma, banana leaves have no stomata and enlarged epidermal cells, and cotton is thinner and without torsion.

Fulltext View|Download
Keywords: Cairan Omasum;Ketercernaan;Bahan Organik;Bioetanol G2

Article Metrics:

  1. Akhtar, N., Goyal, D., & Goyal, A. (2016). Physico-chemical Characteristics of Leaf Litter Biomass to Delineate the Chemistries Involved in Biofuel Production. Journal of the Taiwan Institute of Chemical Engineers, 62, 239-246. https://doi.org/10.1016/j.jtice.2016.02.011
  2. Castillo-González, A. R., Burrola-Barraza, M. E., Domínguez-Viveros, J., & Chávez-Martínez, A. (2014). Rumen Microorganisms and Fermentation. Archivos de Medicina Veterinaria, 46(3), 349-361
  3. https://www.redalyc.org/pdf/1730/173033278003.pdf
  4. Christiyanto, M., Surono, S., Munarifdah, F. I., & Utama, C. S. (2021). Volatile Fatty Acids (VFA) dan Amonia (NH3) Litter Fermentasi dengan Lama Peram yang Berbeda secara in Vitro. Jurnal Ilmu dan Teknologi Peternakan, 9(2), 69-74. https://doi.org/10.20956/jitp.v9i2.12497
  5. Dorez, G., Ferry, L., Sonnier, R., Taguet, A., & Lopez-Cuesta, J. M. (2014). Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. Journal of Analytical and Applied Pyrolysis, 107, 323-331. https://doi.org/10.1016/j.jaap.2014.03.017
  6. Fajar, I., Perwira, I. Y., & Ernawati, N. M. (2022). Pengaruh Derajat Keasaman (pH) terhadap Pertumbuhan Bakteri Toleran Kromium Heksavalen dari Sedimen Mangrove di Muara Tukad Mati, Bali, Current Trends in Aquatic Science, V(1), 1-6. https://ojs.unud.ac.id/index.php/CTAS/article/view/72176/47921
  7. Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical Characterization of Banana Leaves as a Potential Energy Source. Energy conversion and management, 75, 603-608
  8. https://doi.org/10.1016/j.enconman.2013.08.008
  9. Idiawati, N., Harfinda, E. M., & Arianie, L. (2014). Produksi Enzim Selulase oleh Aspergillus niger pada Ampas Sagu. Jurnal Natur Indonesia, 16(1), 1-9. http://dx.doi.org/10.31258/jnat.16.1.1-9
  10. Khatun, S., Hossain, M. A., Akter, T., Banu, M. R., & Kawser, A. Q. M. R. (2019). Replacement of Sodium Bicarbonate and Micronutrients in Kosaric Medium With Banana Leaf Ash Extract for Culture of Spirulina Platensis. Annals of Bangladesh Agriculture, 23(1), 37-47. DOI: 10.3329/aba.v23i1.51472
  11. Li, C., Yang, Z., Zhang, R. H. C., Zhang, D., Chen, S., & Ma, L. (2013). Effect of pH on Cellulase Production and Morphology of Trichoderma reesei and the Application in Cellulosic Material Hydrolysis. Journal of Biotechnology, 168(4), 470-477. https://doi.org/10.1016/j.jbiotec.2013.10.003
  12. Lismeri, L., Utami, S. U., Darni, Y., Hanif, M., & Riyanto, A. (2018). Produksi Gula Reduksi dari Batang Ubi Kayu dengan Hidrolisis Menggunakan Asam Encer dan Induksi Medan Elektromagnetik. Jurnal Rekayasa Kimia dan Lingkungan, 13(1), 8-14. http://repository.lppm.unila.ac.id/id/eprint/7473
  13. Loebis, E. H., Meutia, Y. R., Junaidi, L., & Alamsyah, R. (2015). Proses Delignifikasi Limbah Pasar untuk Produksi Bioetanol. Warta Industri Hasil Pertanian, 32(02), 68-74
  14. http://ejournal.kemenperin.go.id/ihp/article/view/2639/2062
  15. Maemah, M., & Supriadi, D. (2023). Preparasi dan Karakterisasi Selulosa Mikrokristalin dari Fermentasi Ganyong sebagai Eksipien dalam Sediaan Tablet. Journal of Pharmacopolium, 6(1), 46-57
  16. https://ejurnal.universitas-bth.ac.id/index.php/P3M_JoP/article/view/1093
  17. Mirahsanti, N. P. N., Suarjana, I. G. K., & Besung, I. N. K. (2022). Angka Lempeng Total Bakteri dan pH pada Cairan Rumen Sapi Bali Jantan yang Dipotong di Rumah Pemotongan Hewan Pesanggaran. Buletin Veteriner Udayana, 14(5), 446-451. https://doi.org/10.24843/bulvet.2022.v14.i05.p01
  18. Muktham, R., Bhargava, S., Bankupalli, S., & Ball, A. (2016). A Review on 1st and 2nd Generation Bioethanol Production-Recent Progress. Journal of Sustainable Bioenergy Systems, 2016(6), 72-92
  19. https://doi.org/10.4236/jsbs.2016.63008
  20. Ningsih, R. H. C., Ramadani, A. D., Raynissa, D. J., Diapari, D., Fassah, D. M., Astuti, D. A., & Sudarman, A. (2023). Effects of Black Soldier Fly Oil and Calcium Soap Supplementation on Rumen Fermentability of Garut Sheep. IOP Conference Series: Earth and Environmental Science, 1208(1), 1-7
  21. DOI: 10.1088/1755-1315/1208/1/012059
  22. Oematan, G. (2023). Ruminologi. Padang: PT. Global Ekseskutif Teknologi
  23. https://www.researchgate.net/publication/368274598_Buku_RUMINOLOGI
  24. Partama, I. B. G. (2013). Nutrisi dan Pakan Ternak Ruminansia. Denpasar: Udayana University Press. https://erepo.unud.ac.id/id/eprint/20370
  25. Sanjaya, A. (2023). Studi Potensi Asam Lemak Volatil dari Tandan Kosong Kelapa Sawit dengan Fermentasi Anaerob. Inovasi Pembangunan: Jurnal Kelitbangan, 11(01), 45-61. https://doi.org/10.35450/jip.v11i01.342
  26. Sari, P. D., Puri, W. A., & Hanum, D. (2018). Delignifikasi Bonggol Jagung dengan Metode Microwave Alkali. Agrika, 12(2), 164-172. https://doi.org/10.31328/ja.v12i2.767
  27. Syihab, B. H., Damat, D., & Utomo, J. S. (2021). Efektivitas Ekstrak Daun Mangga dengan Etanol 96% sebagai Pengawet Alami terhadap Masa Simpan Ikan Lemuru pada Suhu Rendah. Food Technology and Halal Science Journal, 4(2), 224-236. https://doi.org/10.22219/fths.v4i2.16654
  28. Thapa, S., Mishra, J., Arora, N., Mishra, P., Li, H., O′ Hair, J., & Zhou, S. (2020). Microbial Cellulolytic Enzymes: Diversity snd Biotechnology with Reference to Lignocellulosic Biomass Degradation. Reviews in Environmental Science and Bio/Technology. 19, 621-648. https://doi.org/10.1007/s11157-020-09536-y
  29. Wang, G. R., & Duan, Y. L. (2014). Studies on Lignocellulose Degradation by Rumen Microorganism. Advanced Materials Research. 853(2014), 253-259. https://doi.org/10.4028/www.scientific.net/AMR.853.253
  30. Widayana, G. (2012). Pemanfaatan Energi Surya. Jurnal Pendidikan Teknologi dan Kejuruan. 9(1), 37-46
  31. https://doi.org/10.23887/jptk-undiksha.v9i1.2876
  32. Xu, Q., Qiao, Q., Gao, Y., Hou, J., Hu, M., Du, Y., & Li, X. (2021). Gut Microbiota and Their Role in Health and Metabolic Disease of Dairy Cow. Frontiers in Nutrition. 8(701511), 1-13
  33. https://doi.org/10.3389/fnut.2021.701511
  34. Xue, D., Chen, H., Luo, X., Guan, J., He, Y., & Zhao, X. (2018). Microbial Diversity in the Rumen, Reticulum, Omasum, and Abomasum of Yak on a Rapid Fattening Regime in an Agro-Pastoral Transition Zone. Journal of Microbiology, 56, 734-743. https://doi.org/10.1007/s12275-018-8133-0
  35. Yanuartono, Y., Nururrozi, A., Indarjulianto, S., & Purnamaningsih, H. (2019). Peran Protozoa pada Pencernaan Ruminansia dan Dampak terhadap Lingkungan. Ternak Tropika Journal of Tropical Animal Production. 20(1), 16-28. https://doi.org/10.21776/ub.jtapro.2019.020.01.3

Last update:

No citation recorded.

Last update:

No citation recorded.