skip to main content

ECONOMIC VALUATION ESTIMATION OF SUPPLEMENTARY IRRIGATION WATER IN CROP FARMING ENTERPRISES IN BANTUL REGENCY

*Mohammad Abdul Khafid orcid scopus  -  Natural Resources and Environmental Management Science Study Program, Graduate School, , Indonesia
Yusman Syaukat  -  Department of Resource and Environmental Economics, Faculty of Economics and Management, IPB University, Bogor, West Java, Indonesia, Indonesia
Cecep Kusmana  -  Department of Silviculture, Faculty of Forestry, IPB University, Bogor, West Java, Indonesia, Indonesia
Open Access Copyright 2024 Agrisocionomics: Jurnal Sosial Ekonomi Pertanian under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Hydrological droughts in Bantul Regency significantly reduce crop productivity to an average of 59.97 kw/ha, thereby affecting farmers' income due to land conversion and water scarcity. This study evaluates the economic implications of supplementary irrigation in high, moderate, and low drought-prone zones. Farmers in low (Sabdodadi) and moderate (Guwosari) drought-prone areas can cultivate rice twice a year, whereas those in high drought-prone areas (Wukirsari) can do so only once. The methods employed include literature review, field survey, field data collection, and data analysis using RIA (Residual Imputation Approach) and ArcGIS 10.8. Cash costs for the third planting season in Sabdodadi, Guwosari, and Wukirsari amounted to Rp 11,590,451, Rp 11,698,165, and Rp 10,671,432 per hectare, respectively. Non-cash costs were Rp 2,600,260, Rp 3,331,483, and Rp 4,229,162 per hectare. Total production costs fluctuated, particularly in Sabdodadi, totaling Rp 14,190,711 per hectare. Sabdodadi exhibited the highest income at Rp 15,518,964 per hectare, while Guwosari and Wukirsari reached Rp 15,778,358 and Rp 14,778,346 per hectare. Supplementary irrigation significantly enhances the economic value of food crops, ranging from 20% to 29.15%, with Wukirsari making the highest contribution. The strategy of implementing flexible water tariffs and developing irrigation infrastructure can be applied to promote economic growth in drought-prone areas. Empowering farmers through economic incentives and access to adequate irrigation water is expected to create conditions conducive to sustainable agriculture.

Fulltext View|Download
Keywords: agricultural economics, cropping patterns, food crop production, supplementary water value
Funding: Lembaga Pengelola Dana Pendidikan (LPDP) Ministry of Finance, Republic of Indonesia under contract 202206112409167

Article Metrics:

  1. Adam, K., & Rudiarto, I. 2017. 9493-21404-1-Sm. Jurnal Teknik Sipil & Perencanaan, 19(1), 9–16
  2. Adeoti, O., & Fati, B. O. 2022. Factors constraining household willingness to pay for piped water tariffs: the case of Ekiti State, Nigeria. H2Open Journal, 5(1), 115–133. https://doi.org/10.2166/h2oj.2022.135
  3. Ahmadov, E. 2020. Water resources management to achieve sustainable development in Azerbaijan. Sustainable Futures, 2(May). https://doi.org/10.1016/j.sftr.2020.100030
  4. Alaerts, G. J. 2020. Adaptive policy implementation: Process and impact of Indonesia’s national irrigation reform 1999–2018. World Development, 129, 104880. https://doi.org/10.1016/j.worlddev.2020.104880
  5. Andini, N., Kim, D., & Chun, J. A. 2020. Operational soil moisture modeling using a multi-stage approach based on the generalized complementary principle. Agricultural Water Management, 231(December 2019), 106026. https://doi.org/10.1016/j.agwat.2020.106026
  6. Anshori, A., & Suswatiningsih, T. E. 2022. Irigasi Air Tanah Mendukung Pertanaman Kacang Tanah, Jagung dan Kedelai di Lahan Kering pada Musim Kemarau. AgriHealth: Journal of Agri-Food, Nutrition and Public Health, 3(2), 124. https://doi.org/10.20961/agrihealth.v3i2.62537
  7. Arifah, Salman, D., Yassi, A., & Demmallino, E. B. 2022. Livelihood vulnerability of smallholder farmers to climate change: A comparative analysis based on irrigation access in South Sulawesi, Indonesia. Regional Sustainability, 3(3), 244–253. https://doi.org/10.1016/j.regsus.2022.10.002
  8. Aydogdu, M. H., & Bilgic, A. 2016. An evaluation of farmers’ willingness to pay for efficient irrigation for sustainable usage of resources: the GAP-Harran Plain case, Turkey. Journal of Integrative Environmental Sciences, 13(2–4), 175–186. https://doi.org/10.1080/1943815X.2016.1241808
  9. Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., & Manzano-Agugliaro, F. 2019. Worldwide research trends on sustainable land use in agriculture. Land Use Policy, 87(May), 104069. https://doi.org/10.1016/j.landusepol.2019.104069
  10. Berni, I., Menouni, A., Ghazi El, I., Duca, R. C., Kestemont, M. P., Godderis, L., & Jaafari El, S. 2021. Understanding farmers’ safety behavior regarding pesticide use in Morocco. Sustainable Production and Consumption, 25, 471–483. https://doi.org/10.1016/j.spc.2020.11.019
  11. Bharathkumar, L., & Mohammed-Aslam, M. A. 2015. Crop Pattern Mapping of Tumkur Taluk Using NDVI Technique: A Remote Sensing and GIS Approach. Aquatic Procedia, 4(Icwrcoe), 1397–1404. https://doi.org/10.1016/j.aqpro.2015.02.181
  12. Brusseau, M. L., Ramirez-Andreotta, M., Pepper, I. L., & Maximillian, J. 2019. Environmental Impacts on Human Health and Well-Being. In Environmental and Pollution Science (3rd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814719-1.00026-4
  13. Chen, B., Huang, B., & Xu, B. 2015. Comparison of spatiotemporal fusion models: A review. Remote Sensing, 7(2), 1798–1835. https://doi.org/10.3390/rs70201798
  14. Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., & Tao, F. 2016. Identifying the impact of multi-hazards on crop yield — A case for heat stress and dry stress on winter wheat yield in northern China. 73, 55–63
  15. Cheng, X., Shuai, C., Liu, J., Wang, J., Liu, Y., Li, W., & Shuai, J. 2018. Topic modelling of ecology, environment and poverty nexus: An integrated framework. Agriculture, Ecosystems and Environment, 267(July), 1–14. https://doi.org/10.1016/j.agee.2018.07.022
  16. Clarke, H. R. 1989. Theory and Methodology Combinatorial aspects of cropping pattern selection in agriculture *. European Journal of Operational Research, 40(April 1988), 70–77
  17. Cousins, B. 2013. Smallholder Irrigation Schemes, Agrarian Reform and Accumulation from Above and from Below in South Africa. Journal of Agrarian Change, 13(1), 116–139. https://doi.org/10.1111/joac.12000
  18. D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., & Rulli, M. C. 2020. The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21985–21993. https://doi.org/10.1073/pnas.2005835117
  19. Dabanli, I. 2018. Drought hazard, vulnerability, and risk assessment in Turkey. Arabian Journal of Geosciences, 11(18), 1–12. https://doi.org/10.1007/s12517-018-3867-x
  20. Das, B., Singh, A., Panda, S. N., & Yasuda, H. 2015. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527–537. https://doi.org/10.1016/j.landusepol.2014.09.012
  21. Factors, E., Governing, C., Erosion, S., & Processes, E. 1982. Chapter 4 Erosion Factors and Conditions Governing Soil Erosion and Erosion Processe. c, 205–387. https://doi.org/10.1016/s0166-2481(08)70647-0
  22. Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., … Yamazaki, D. 2019. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources Research, 1737–1772. https://doi.org/10.1029/2018WR023903
  23. Fan, Y., He, L., Liu, Y., & Wang, S. 2022. Optimal cropping patterns can be conducive to sustainable irrigation: Evidence from the drylands of Northwest China. Agricultural Water Management, 274(August), 107977. https://doi.org/10.1016/j.agwat.2022.107977
  24. Fanzo, J., Bellows, A. L., Spiker, M. L., Thorne-Lyman, A. L., & Bloem, M. W. 2021. The importance of food systems and the environment for nutrition. American Journal of Clinical Nutrition, 113(1), 7–16. https://doi.org/10.1093/ajcn/nqaa313
  25. FAO. 2019. Tool for Agroecology Performance Evaluation (TAPE) - Test version
  26. Febriarta, E., & Purnama, S. 2020. Identifikasi Keterdapatan Airtanah Dengan Electromagnetic Very Low Frequency (EM-VLF) di Non Cekungan Airtanah Kecamatan Ungaran Timur. Jurnal Geosains Dan Teknologi, 3(2), 52–62. https://doi.org/10.14710/jgt.3.2.2020.52-62
  27. Fleming-Muñoz, D. A., Whitten, S., & Bonnett, G. D. 2023. The economics of drought: A review of impacts and costs. Australian Journal of Agricultural and Resource Economics, 67(4), 501–523. https://doi.org/10.1111/1467-8489.12527
  28. Fulazzaky, M. A. 2014. Challenges of integrated water resources management in Indonesia. Water (Switzerland), 6(7), 2000–2020. https://doi.org/10.3390/w6072000
  29. Furtak, K., & Wolińska, A. 2023. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review. Catena, 231(February). https://doi.org/10.1016/j.catena.2023.107378
  30. Gharsallah, O., Rienzner, M., Mayer, A., Tkachenko, D., Corsi, S., Vuciterna, R., Romani, M., Ricciardelli, A., Cadei, E., Trevisan, M., Lamastra, L., Tediosi, A., Voccia, D., & Facchi, A. 2023. Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy. Frontiers in Water, 5. https://doi.org/10.3389/frwa.2023.1213047
  31. Gilardi, G. L. C., Mayer, A., Rienzner, M., Romani, M., & Facchi, A. 2023. Effect of Alternate Wetting and Drying (AWD) and Other Irrigation Management Strategies on Water Resources in Rice-Producing Areas of Northern Italy. Water (Switzerland), 15(12). https://doi.org/10.3390/w15122150
  32. Gleick, P. H., & Cooley, H. 2021. Freshwater Scarcity. Annual Review of Environment and Resources, 46, 319–348. https://doi.org/10.1146/annurev-environ-012220-101319
  33. Gopalakrishnan, T., & Kumar, L. 2020. Assessment of Spatial and Temporal Trend of Groundwater Salinity in Ja ff na Peninsula and Its Link to Paddy Land Abandonment
  34. Guo, Z. 2016. Understanding Fertility Trends in China. In Contemporary Demographic Transformations in China, India and Indonesia. https://doi.org/10.1007/978-3-319-24783-0_6
  35. Hapsari, E. D., Jayanti, R. D., Nugraheni, D., & Panuntun, R. A. 2020. Information needs in pregnant women living in disaster prone area. Enfermeria Clinica, 30, 80–86. https://doi.org/10.1016/j.enfcli.2019.12.032
  36. Harefa, B. C. P., Nasution, I. S., & Satriyo, P. 2022. Water Footprint Sebagai Konsep Pengelolaan Sumber Daya Air Berkelanjutan. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 499–504. https://doi.org/10.17969/jimfp.v7i2.19798
  37. Hokanson, K. J., Mendoza, C. A., & Devito, K. J. 2019. Interactions Between Regional Climate, Surficial Geology, and Topography: Characterizing Shallow Groundwater Systems in Subhumid, Low-Relief Landscapes. Water Resources Research, 55(1), 284–297. https://doi.org/10.1029/2018WR023934
  38. Huang, G., Hoekstra, A. Y., Krol, M. S., Jägermeyr, J., Galindo, A., Yu, C., & Wang, R. 2020. Water-saving agriculture can deliver deep water cuts for China. Resources, Conservation and Recycling, 154(September 2019), 104578. https://doi.org/10.1016/j.resconrec.2019.104578
  39. Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. 2023. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
  40. Istadi, I., & Gernowo, R. 2023. GeoPlanning. 10(1). https://doi.org/10.14710/geoplanning.10.1.55-72
  41. Jiang, Y., Stetson, T., Kostic, A., Anderson, S., & Ramsay, M. 2022. Profitability of Supplemental Irrigation and Soil Dewatering for Potato Production in Atlantic Canada: Insights from Historical Yield and Weather Data. American Journal of Potato Research, 99(5–6), 369–389. https://doi.org/10.1007/s12230-022-09890-3
  42. Kane, A. M., Lagat, J. K., Fane, T., Langat, J. K., & Teme, B. 2019. Economic Viability of Alternative Small-Scale Irrigation Systems Used in Vegetables Production in Koulikoro and Mopti Regions, Mali. In Handbook of Climate Change Resilience, Volume 1-4 (Vol. 2). https://doi.org/10.1007/978-3-319-93336-8_101
  43. Kemeze, F. H. 2020. Economic valuation of supplemental irrigation via small-scale water harvesting. Water Resources and Economics, 31(March), 100160. https://doi.org/10.1016/j.wre.2020.100160
  44. Khan, J., Singh, R., Upreti, P., & Yadav, R. K. 2022. Geo-statistical assessment of soil quality and identification of Heavy metal contamination using Integrated GIS and Multivariate statistical analysis in Industrial region of Western India. Environmental Technology and Innovation, 28, 102646. https://doi.org/10.1016/j.eti.2022.102646
  45. Klein, K. K., Yan, W., & Le Roy, D. G. 2012. Estimating the incremental gross margins due to irrigation water in Southern Alberta. Canadian Water Resources Journal, 37(2), 89–103. https://doi.org/10.4296/cwrj3702930
  46. Kumar Lalit. 2020. Climate Change and Impacts in the Pacific: EBSCOhost. In Springer Climate. https://web-p-ebscohost-com.ezproxy.usp.ac.fj/ehost/detail/detail?vid=0&sid=f0ce814c-478c-436c-872d-bf9527a10f12%40redis&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=2364647&db=nlebk
  47. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. 2017. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/JSS.V082.I13
  48. Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. 2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012
  49. Li, J., Shang, S., Jiang, H., Song, J., Rahman, K. U., & Adeloye, A. J. 2021. Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region. Agricultural Water Management, 254(May), 106952. https://doi.org/10.1016/j.agwat.2021.106952
  50. Li, Y., Yi, F., Wang, Y., & Gudaj, R. 2019. The value of El Niño-Southern Oscillation forecasts to China’s agriculture. Sustainability (Switzerland), 11(15), 1–23. https://doi.org/10.3390/su11154184
  51. Liu, M., Liang, F., Li, Q., Wang, G., Tian, Y., & Jia, H. 2023. Enhancement growth, water use efficiency and economic benefit for maize by drip irrigation in Northwest China. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-35611-9
  52. Ma’Mun, S. R., Loch, A., & Young, M. D. 2021. Sustainable irrigation in Indonesia: A case study of Southeast Sulawesi Province. Land Use Policy, 111(August), 105707. https://doi.org/10.1016/j.landusepol.2021.105707
  53. Malau, L. R. E., Rambe, K. R., Ulya, N. A., & Purba, A. G. 2023. Dampak perubahan iklim terhadap produksi tanaman pangan di indonesia. Jurnal Penelitian Pertanian Terapan, 23(1), 34–46. https://doi.org/10.25181/jppt.v23i1.2418
  54. Maliva, R., & Missimer, T. 2012. Integrated Water Resources Management. Environmental Science and Engineering, 911–925. https://doi.org/10.1007/978-3-642-29104-3_35
  55. Medellín-Azuara, J., Escriva-Bou, A., Rodríguez-Flores, J. M., Cole, S. A., Abatzoglou, J., Viers, J. H., Santos, N., Summer, D. A., Medina, C., Arévalo, R., Naumes, S., Bernacchi, L., Professor, A., Abatzoglou, J. T., Daniel Sumner, M. A., & Buck Jr, F. E. 2022. Economic Impacts of the 2020-22 Drought on California Agriculture Prepared for: The California Department of Food and Agriculture About the Authors. http://drought.ucmerced.edu
  56. Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. February, 1–7
  57. Meredith Giordano, Hugh Turral, Susanne M. Scheierling, D. O. T. and P. G. M. 2017. IWMI Research Report 169: Beyond “More Crop per Drop.” In (Colombo, Sri Lanka: IWMI Research Report)
  58. Meyerhoff, J., Boeri, M., & Hartje, V. 2014. The value of water quality improvements in the region Berlin-Brandenburg as a function of distance and state residency. Water Resources and Economics, 5(2014), 49–66. https://doi.org/10.1016/j.wre.2014.02.001
  59. Mishra, B., Busetto, L., Boschetti, M., Laborte, A., & Nelson, A. 2021. RICA: A rice crop calendar for Asia based on MODIS multi year data. International Journal of Applied Earth Observation and Geoinformation, 103(September), 102471. https://doi.org/10.1016/j.jag.2021.102471
  60. Miyamoto, K., Aiba, S. ichiro, Aoyagi, R., & Nilus, R. 2021. Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. Forest Ecology and Management, 490, 119096. https://doi.org/10.1016/j.foreco.2021.119096
  61. Mulyasari, G., Prawito, P., Djarot, I. N., Sasongko, N. A., Handayani, T., Putra, A. S., Widyastuti, N., Rifai, A., Peni Wijayanti, S., Bahua, H., Nuha, Isharyadi, F., & Paminto, A. K. 2023. Perception of rainfed farmers on the impact of climate variability in Bengkulu Province, Indonesia. E3S Web of Conferences, 467. https://doi.org/10.1051/e3sconf/202346706003
  62. Nasrudin, & Kurniasih, B. 2021. The agro-physiological characteristics of three rice varieties affected by water depth in the coastal agricultural land of yogyakarta, indonesia. Biodiversitas, 22(9), 3656–3662. https://doi.org/10.13057/biodiv/d220907
  63. Nugroho, B. D. A., & Nuraini, L. 2016. Cropping Pattern Scenario based on Global Climate Indices and Rainfall in Banyumas District, Central Java, Indonesia. Agriculture and Agricultural Science Procedia, 9, 54–63. https://doi.org/10.1016/j.aaspro.2016.02.124
  64. Okada, M., Iizumi, T., Sakamoto, T., Kotoku, M., Sakurai, G., Hijioka, Y., & Nishimori, M. 2018. Varying Benefits of Irrigation Expansion for Crop Production Under a Changing Climate and Competitive Water Use Among Crops. Earth’s Future, 6(9), 1207–1220. https://doi.org/10.1029/2017EF000763
  65. Paat, P. C., Polakitan, D., Ifada, R. R., & Rembang, J. H. W. 2021. Carrying capacity of maize as cattle feed in North Sulawesi, Indonesia. E3S Web of Conferences, 306, 1–8. https://doi.org/10.1051/e3sconf/202130605010
  66. Panuju, D. R., Mizuno, K., & Trisasongko, B. H. 2013. The dynamics of rice production in Indonesia 1961–2009. Journal of the Saudi Society of Agricultural Sciences, 12(1), 27–37. https://doi.org/10.1016/j.jssas.2012.05.002
  67. Papers, W. 2023. Efficient Irrigation and Water Conservation in Central Asia
  68. Partridge, T., Winter, J., Kendall, A., Basso, B., Pei, L., & Hyndman, D. 2023. Irrigation benefits outweigh costs in more US croplands by mid-century. Communications Earth and Environment, 4(1), 1–15. https://doi.org/10.1038/s43247-023-00889-0
  69. Qian, J., & Service, E. T. (2010). Basic Concepts in Sampling. 390–395
  70. Radmehr, A., Bozorg-Haddad, O., & Loáiciga, H. A. 2022. Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-12194-5
  71. Rifai, S. W., Li, S., & Malhi, Y. 2019. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environmental Research Letters, 14(10). https://doi.org/10.1088/1748-9326/ab402f
  72. Saepudin, T., & Amalia, A. 2022. Analysis of Rice Production Approach To Cobb Douglas Production Function in Tambakdahan Sub-District Subang District. Agricultural Social Economic Journal, 22(2), 121–127. https://doi.org/10.21776/ub.agrise.2022.022.2.6
  73. Santosa, R. R. A., Sayekti, R. W., & Siswoyo, H. 2022. Kesesuaian Lahan Potensial untuk Memanfaatkan Sisa Suplesi Bendungan Semantok di Kabupaten Nganjuk Provinsi Jawa Timur. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(2), 39. https://doi.org/10.21776/ub.jtresda.2022.002.02.03
  74. Schmidt, S., Alewell, C., & Meusburger, K. 2018. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sensing of Environment, 211(December 2017), 89–104. https://doi.org/10.1016/j.rse.2018.04.008
  75. Shurson, G. C., Dierenfeld, E. S., & Dou, Z. 2023. Rules are meant to be broken – Rethinking the regulations on the use of food waste as animal feed. Resources, Conservation and Recycling, 199(July), 107273. https://doi.org/10.1016/j.resconrec.2023.107273
  76. Song, J., Her, Y., Yu, X., Li, Y., Smyth, A., & Martens-habbena, W. 2022. Agriculture , Ecosystems and Environment Effect of information-driven irrigation scheduling on water use efficiency , nutrient leaching , greenhouse gas emission , and plant growth in South Florida. Agriculture, Ecosystems and Environment, 333(October 2021), 107954. https://doi.org/10.1016/j.agee.2022.107954
  77. Suhardiman, D. 2018. Linking Irrigation Development with the Wider Agrarian Context: Everyday Class Politics in Water Distribution Practices in Rural Java. Journal of Development Studies, 54(3), 413–425. https://doi.org/10.1080/00220388.2016.1228878
  78. Suhardiman, D., & Giordano, M. 2014. Is there an alternative for irrigation reform? World Development, 57, 91–100. https://doi.org/10.1016/j.worlddev.2013.11.016
  79. Sukmawati, A. M. A., & Utomo, P. 2021. Drought hazard assessment in urban areas: A case of Bantul Regency, Special Region of Yogyakarta. IOP Conference Series: Earth and Environmental Science, 738(1). https://doi.org/10.1088/1755-1315/738/1/012068
  80. Susmayadi, I. M., Sudibyakto, Kanagae, H., Adiyoso, W., & Suryanti, E. D. 2014. Sustainable Disaster Risk Reduction through Effective Risk Communication Media in Parangtritis Tourism Area, Yogyakarta. Procedia Environmental Sciences, 20, 684–692. https://doi.org/10.1016/j.proenv.2014.03.082
  81. Syaukat, Y., & Siwi, A. A. N. 2009. Estimating the Economic Value of Irrigation Water on Rice Farming System in Van Der Wijceirrigation Areas, District of Sleman, Yogyakarta. Jurnal Ilmu Pertanian Indonesia, 14(3), 201–210
  82. Tabari, H., & Willems, P. 2023. Sustainable development substantially reduces the risk of future drought impacts. Communications Earth and Environment, 4(1), 1–10. https://doi.org/10.1038/s43247-023-00840-3
  83. Tatis Diaz, R., Pinto Osorio, D., Medina Hernández, E., Moreno Pallares, M., Canales, F. A., Corrales Paternina, A., & Echeverría-González, A. 2022. Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia. Journal of the Saudi Society of Agricultural Sciences, 21(7), 440–451. https://doi.org/10.1016/j.jssas.2021.12.001
  84. Telo da Gama, J. 2023. The Role of Soils in Sustainability, Climate Change, and Ecosystem Services: Challenges and Opportunities. Ecologies, 4(3), 552–567. https://doi.org/10.3390/ecologies4030036
  85. Tribouillois, H., Constantin, J., Murgue, C., Villerd, J., & Therond, O. 2022. Integrated modeling of crop and water management at the watershed scale : Optimizing irrigation and modifying crop succession. European Journal of Agronomy, 140(July), 126592. https://doi.org/10.1016/j.eja.2022.126592
  86. Upadhyaya, A., Jeet, P., Singh, A. K., & Sundaram, P. K. 2023. Estimation of the economic value of irrigation water in canal and tube well command areas. H2Open Journal, 6(2), 131–139. https://doi.org/10.2166/h2oj.2023.011
  87. Urfels, A., McDonald, A. J., Krupnik, T. J., & van Oel, P. R. 2020. Drivers of groundwater utilization in water-limited rice production systems in Nepal. Water International, 45(1), 39–59
  88. Utomo, A. S., Hadi, M. P., & Nurjani, E. 2022. Analisis spasial temporal zona rawan kekeringan lahan pertanian berbasis remote sensing. Jurnal Teknosains, 11(2), 112
  89. Venot, J. P., Molle, F., & Hassan, Y. 2007. Irrigated Agriculture, Water Pricing and Water Savings in the Lower Jordan River Basin. Comprehensive Assessment of Water Management in Agriculture Research Report 18
  90. Von Braun, J., Afsana, K., Fresco, L. O., & Hassan, M. H. A. 2023. Science and Innovations for Food Systems Transformation. In Science and Innovations for Food Systems Transformation. https://doi.org/10.1007/978-3-031-15703-5
  91. Wang, F., Yu, C., Xiong, L., & Chang, Y. 2019. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resources, Conservation and Recycling, 145(35), 411–418. https://doi.org/10.1016/j.resconrec.2019.03.017
  92. Wu, J., Chen, X., Yuan, X., Yao, H., Zhao, Y., & AghaKouchak, A. 2021. The interactions between hydrological drought evolution and precipitation-streamflow relationship. Journal of Hydrology, 597(February), 126210. https://doi.org/10.1016/j.jhydrol.2021.126210
  93. Yang, S., Wang, H., Tong, J., Ma, J., Zhang, F., & Wu, S. 2020. Technical efficiency of china’s agriculture and output elasticity of factors based on water resources utilization. Water (Switzerland), 12(10), 1–23. https://doi.org/10.3390/w12102691
  94. Young, R. A., & Loomis, J. B. 2014. Determining the economic value of water: Concepts and methods, 2nd edition. In Determining the Economic Value of Water: Concepts and Methods, 2nd Edition. https://doi.org/10.4324/9780203784112
  95. Yulianti, D. 2023. Upaya Indonesia Menjaga Keamanan Pangan ( Food Security ) melalui Paris Agreement of Climate Change. 8(2), 263–285
  96. Zhang, F., Chen, Y., Zhang, J., Guo, E., Wang, R., & Li, D. 2019. Dynamic drought risk assessment for maize based on crop simulation model and multi-source drought indices. Journal of Cleaner Production, 233, 100–114. https://doi.org/10.1016/j.jclepro.2019.06.051
  97. Zhang, J., Yang, J., An, P., Ren, W., Pan, Z., & Dong, Z. 2017. Agricultural and Forest Meteorology Enhancing soil drought induced by climate change and agricultural practices : Observational and experimental evidence from the semiarid area of northern China. Agricultural and Forest Meteorology, 243(2), 74–83. https://doi.org/10.1016/j.agrformet.2017.05.008

Last update:

No citation recorded.

Last update:

No citation recorded.