skip to main content

FORECASTING ANALYSIS OF RICE AVAILABILITY AND DEMAND IN LAMPUNG PROVINCE

Ummu Adilla  -  Department of Agribusiness, Faculty of Agriculture, Lampung University, Lampung, Indonesia, Indonesia
*Novi Rosanti  -  Department of Agribusiness, Faculty of Agriculture, Lampung University, Lampung, Indonesia, Indonesia
Dwi Haryono  -  Department of Agribusiness, Faculty of Agriculture, Lampung University, Lampung, Indonesia, Indonesia
Open Access Copyright 2024 Agrisocionomics: Jurnal Sosial Ekonomi Pertanian under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Lampung Province's population is growing yearly at an average rate of 1.10%. The need for rice in the province of Lampung will continue to increase as the population increases. However, the increase in rice production needs to be balanced with the population growth rate. This study aims to describe the availability and needs of rice in Lampung Province and project the availability and needs of rice in Lampung Province. The method used in this research is descriptive quantitative with a secondary data analysis approach using time series data from 2002 – 2022. The data analysis method used is descriptive quantitative and forecasting using ARIMA. The results showed that the availability and needs in Lampung Province over the past 20 years have always experienced a surplus. The increase in the amount of rice was achieved through the programs launched by the Ministry of Agriculture, including the UPSUS program and the Farmers Success Card. Rice availability and demand in Lampung Province will increase from 2022 - 2032. The results of the forecast of rice availability in Lampung Province increased significantly, where in 2022, it was 1,967,866.72 tons, and in 2032, it could reach 2,075,982.18 tons. Lampung Province's rice demand is predicted to increase significantly, where in 2022, it was 1,005,054.35 tons to 1,314,276.61 in 2032.

Fulltext View|Download
Keywords: demand, availability, secondary data, forecasting

Article Metrics:

  1. Abdullah, F., Imran, Supriyo, D., & Rauf, A. 2021. Analisis Ketersediaan Beras Di Kabupaten Gorontalo Selang Tahun 2021-2030. AGRINESIA, 6, 3
  2. Adebayo, I. A., Dada, A. R., & Olarewaju, O. M. 2014. An Appraisal of Effective Financial Management of Local Government Funds: A Case of Ido-Osi Local Government Area, Nigeria. Research Journal of Finance and Accounting, 5(17), 33–38
  3. Adhikari R & Agarwal, R. K. 2013. An Introductory Study on Time Series Modeling and Forecasting. ArXiv Preprint ArXiv, 1302.6613
  4. Agriculture, M. of. 2021. Analysis of Food Security in 2021. Center for Agricultural Data and Information Systems (Ministry of Agriculture (ed.)). Ministry of Agriculture
  5. Ahmad Farooqi. 2014. Model Building and Forecasting on Import and Export Of Pakistan. Journal of Statistics and Operations Research, 10(1), 157–168
  6. Aido, I., Prasmatiwi, F. E., & Adawiyah, R. 2021. Pola Konsumsi Dan Permintaan Beras Tingkat Rumah Tangga Di Kota Bandar Lampung. Jurnal Ilmu-Ilmu Agribisnis, 9(3), 470. https://doi.org/10.23960/jiia.v9i3.5336
  7. Aji, J. M. M., & Widodo, A. 2010. Kabupaten Jember Dan Faktor Yang Mempengaruhinya. Jurnal Sosial Ekonomi Pertanian, 4(3), 12–24. https://jurnal.unej.ac.id/index.php/JSEP/article/view/393/251
  8. Central Bureau of Statistics. 2021. Consumption of Basic Materials 2019 (Central Bureau of Statistics (ed.)). Central Bureau of Statistics
  9. Central Bureau of Statistics. 2022. Population Growth Rate (Percent) 2020-2022. Central Bureau of Statistics
  10. Central Bureau of Statistics of Lampung Province. 2021. Rice (Harvested Area, Production, and Productivity). Lampung Provincial Statistics Agency
  11. Crops, D. G. of F. 2020. Annual Report of the Directorate General of Food Crops in 2019. Ministry of Agriculture
  12. Deka, A., & Resatoglu, N. G. 2019. Forecasting Foreign Exchange Rate And Consumer Price Index With Arima Model: The Case Of Turkey. International Journal of Scientific Research and Management, 7(08), 1254–1275. https://doi.org/10.18535/ijsrm/v7i8.em01
  13. Food Security Agency. 2021. Technical Guidelines for the Compilation of Food Security Statistics 2021No Title (Ministry of Agriculture (ed.)). Ministry of Agriculture
  14. Harijono, S. &. 2000. Business Forecasting. PT Gramedia Pustaka Utama
  15. Heizer, J., Render, B., & Munson, C. 2011. Operations Management Sustainability and Supply Chain Management. Pearson
  16. Isnawati. 2022. Analisis Kebutuhan dan Konsumsi Beras Masyarakat Indonesia Tahun 2021. Jurnal of Economic and Social Sciences, 1(1), 68
  17. Kassali, R., Kareem, R. O., Oluwasola, O., & Ohaegbulam, O. M. 2010. Analysis of Demand For Rice in Ile Ife, Osun State, Nigeria. Journal of Sustainable Development in Africa, 12(2), 47–60
  18. Khodijah, Mukmin, H., & Yanti, F. 2022. Peningkatan Kesejahteraan Masyarakat Petani Melalui Program UPSUS PAJALE di Lampung Selatan. Jurnal Pengembangan Masyarakat Islam, 15(1), 1–14
  19. Klimberg, Ronald K., George P. Sillup, Kevin J. Boyle, and V., & Tavva. 2010. Forecasting Performance Measures - What are their practical meaning. Adv. Bus. Manag. Forecast
  20. Kristien Margi S & Sofian Pendawa. 2015. Analysis and Application of Single Exponential Smoothing Method For Sales Prediction in a Specific Period (Case Study: Pt. Media Cemara Kreasi). Prosiding SNATIF, 2(1)
  21. Lubis, M. M., Bakti, D., Ginting, R., & Ayu, S. F. 2022. Production and demand forecasting analysis of rice in North Sumatra in 2030. IOP Conference Series: Earth and Environmental Science, 977(1). https://doi.org/10.1088/1755-1315/977/1/012060
  22. Mahdalena, W., Supriana, T., & Lubis, S. N. 2015. Faktor-faktor yang Mempengaruhi Ketersediaan Beras dan Jagung di Provinsi Sumatera Utara. Jurnal USU, 1(1), 1–13
  23. Rahim, F. H. A., Hawari, N. N., & Abidin, N. Z. 2017. Supply and demand of rice in Malaysia: A system dynamics approach. International Journal of Supply Chain Management, 6(4), 234–240
  24. Rianti, A. T., Bafadal, A., & Abdi, A. 2023. Forecasting Analysis of Rice Production and Sufficiency Consumption of Rice (Oriza sativa) in Konawe District. Jurnal Ilmiah Membangun Desa Dan Pertanian, 8(3), 96–101. https://doi.org/10.37149/jimdp.v8i3.131
  25. Waeto, S., Chuarkham, K., & Intarasit, A. 2017. Forecasting time series movement direction with hybrid methodology. Journal of Probability and Statistics, 2017. https://doi.org/10.1155/2017/3174305
  26. Yusuf, Y., Amrullah, A., & Tenriawaru, A. N. 2018. Perilaku Konsumen Pada Pembelian Beras Di Kota Makassar. Jurnal Sosial Ekonomi Pertanian, 14(2), 105. https://doi.org/10.20956/jsep.v14i2.3695
  27. Zainul, A., Hanani, N., Kustiono, D., Syafrial, S., & Asmara, R. 2021. Forecasting the Basic Conditions of Indonesia’S Rice Economy 2019-2045. Agricultural Social Economic Journal, 21(02), 111–120. https://doi.org/10.21776/ub.agrise.2021.021.2.4

Last update:

No citation recorded.

Last update:

No citation recorded.