skip to main content

EXPLORATION AND IDENTIFICATION OF SUCCESS FACTORS OF CATTLE POPULATION INCREASE PROGRAM

*Rini Mastuti orcid scopus  -  Department of Agribussiness, Samudra University, Langsa Aceh, Indonesia, Indonesia
Muhammad Fuad  -  Department of Management, Samudra University, Langsa Aceh, Indonesia, Indonesia
Supristiwendi Supristiwendi  -  Department of Agribussiness, Samudra University, Langsa Aceh, Indonesia, Indonesia
Hanisah Hanisah  -  Department of Agribussiness, Samudra University, Langsa Aceh, Indonesia, Indonesia
Muhammad Jamil  -  Department of Agribussiness, Samudra University, Langsa Aceh, Indonesia, Indonesia
Open Access Copyright 2023 Agrisocionomics: Jurnal Sosial Ekonomi Pertanian under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The Langsa City area is one of the 9 implementation areas of the Beef Self-Sufficiency Program (PSDS) in Aceh Province. The implementation of this activity is supported by the Upsus SIWAB Program which requires cows to be mated and uses the latest Indonesian Animal Health Information System (iSIKHNAS). This study aims to investigate and identify the factors that exist in Langsa City, Aceh Province, Indonesia. To achieve this, data was collected through surveys, field observations and in-depth interviews with key respondents and 100 farmers, using questionnaires, tape recorders, and image documentation. The focus is on identifying PSDS leveraging factors, with the object of study related to breeders, inseminators, livestock, and supporting factors. Furthermore, the data collected was carried out quantitatively using Structural Equation Modeling Partial Least Square (SEM-PLS) data analysis, and qualitatively using descriptive methods. The results showed that the condition of the livestock which was influenced by the characteristics of breeders and inseminators became a key factor in Langsa City, Aceh Province at this time. Considering these results, recommendations are made to the government to design better PSDS policies in the future.

Fulltext View|Download
Keywords: cattle, inseminators, SEM, self-sufficiency.

Article Metrics:

  1. Agus, A. & T. S. M. Widi. 2018. Current Situation and Future Prospects for Beef Cattle Production in Indonesia - A Review. Asian-Australasian Journal of Animal Sciences 31(7):976–83. doi: 10.5713/ajas.18.0233
  2. Alsahaf, A., R. Gheorghe, A. M. Hidalgo, N. Petkov & G. Azzopardi. 2023. Pre-Insemination Prediction of Dystocia in Dairy Cattle. Preventive Veterinary Medicine 210(November 2022):0–7. doi: 10.1016/j.prevetmed.2022.105812
  3. Aquilani, C., A. Confessore, R. Bozzi, F. Sirtori, & C. Pugliese. 2022. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 16(1):100429. doi: 10.1016/j.animal.2021.100429
  4. Arsyad, M., Rahmadanih, S. Bulkis, Hasnah, A. Sulili, Darwis, A. Bustan & M. Aswad. 2018. Role of Joined Farmer Groups in Enhancing Production and Farmers Income. IOP Conference Series: Earth and Environmental Science 157(1). doi: 10.1088/1755-1315/157/1/012060
  5. Ayalew, W., Xiao-yun W.U., G.M. Tarekegn, C.N. Liang, T.S. Tessema & P. Yan. 2023. Signatures of Positive Selection for Local Adaptation of African Native Cattle Populations: A Review. Journal of Integrative Agriculture. doi: 10.1016/j.jia.2023.01.004
  6. Barrientos B., Jorge A., N. M. Thompson, N. J. O. Widmar, C. A. Wolf & L.U. Snyder. 2018. Expected Value of Crossbred Dairy Cattle Artificial Insemination Breeding Strategies in Virgin Heifers and Lactating Cows. Vol. 211. Elsevier B.V
  7. Bilotto, F., R.Vibart, A. Wall & C. F. Machado. 2021. Estimation of the Inter-Annual Marginal Value of Additional Feed and Its Replacement Cost for Beef Cattle Systems in the Flooding Pampas of Argentina. Agricultural Systems 187(February 2020):103010. doi: 10.1016/j.agsy.2020.103010
  8. Bork, E. W., T. F. Döbert, J. S. J. Grenke, C. N. Carlyle, J.F. Cahill & M. S. Boyce. 2021. Comparative Pasture Management on Canadian Cattle Ranches With and Without Adaptive Multipaddock Grazing. Rangeland Ecology and Management 78:5–14. doi: 10.1016/j.rama.2021.04.010
  9. Badan Pusat Statistik (BPS). 2022. Kota Langsa Dalam Angka Tahun 2022
  10. Cabiddu, A., G. Peratoner, B. Valenti, V. Monteils, B. Martin & M. Coppa. 2022. A Quantitative Review of On-Farm Feeding Practices to Enhance the Quality of Grassland-Based Ruminant Dairy and Meat Products. Animal 16:100375. doi: 10.1016/j.animal.2021.100375
  11. Cowley, F.C., T.M. Syahniar, D. Ratnawati, D. E. Mayberry, Marsetyo, D. Pamungkas, & D.P. Poppi. 2020. Greater Farmer Investment in Well-Formulated Diets Can Increase Liveweight Gain and Smallholder Gross Margins from Cattle Fattening. Livestock Science 242(December 2019):104297. doi: 10.1016/j.livsci.2020.104297
  12. Crowe, M. A., M. Hostens, & G. Opsomer. 2018. Reproductive Management in Dairy Cows - The Future. Irish Veterinary Journal 71(1):1–13. doi: 10.1186/s13620-017-0112-y
  13. Dalton, J. C., J. Q. Robinson, W. J. Price, J. M. DeJarnette & A. Chapwanya. 2021. Artificial Insemination of Cattle: Description and Assessment of a Training Program for Veterinary Students. Journal of Dairy Science 104(5):6295–6303. doi: 10.3168/jds.2020-19655
  14. Damberg, S. 2023. Advanced PLS-SEM Models for Bank Customer Relationship Management Using Survey Data. Data in Brief 48:109187. doi: 10.1016/j.dib.2023.109187
  15. DeVries, T.J. 2019. Feeding Behavior, Feed Space, and Bunk Design and Management for Adult Dairy Cattle. Veterinary Clinics of North America - Food Animal Practice 35(1):61–76. doi: 10.1016/j.cvfa.2018.10.003
  16. Džermeikaitė, K., D.Bačėninaitė & R. Antanaitis. 2023. Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals 13(5):1–23. doi: 10.3390/ani13050780
  17. Fertier, A., A.Montarnal, S. Truptil, & F. Bénaben. 2020. Jo Ur Na l P Re Jo Ur l P Re. Decision Support Systems (January):113260. doi: 10.1016/j.chbr.2023.100291
  18. Guo, Z. & F. Qin. 2022. An Empirical Analysis of the Role of Forage Product Trade on Grassland Quality and Livestock Production in China. Land 11(11). doi: 10.3390/land11111938
  19. Kaul, S., K. J. Boyle, N.V. Kuminoff, C. F. Parmeter & J.C. Pope. 2013. What Can We Learn from Benefit Transfer Errors? Evidence from 20 Years of Research on Convergent Validity. Journal of Environmental Economics and Management 66(1):90–104. doi: 10.1016/j.jeem.2013.03.001
  20. Koenig, K.M., C. Li, D. E. Hunt, K.A. Beauchemin & S.Bittman. 2023. Effects of Sustainable Agronomic Intensification in a Forage Production System of Perennial Grass and Silage Corn on Nutritive Value and Predicted Milk Production of Dairy Cattle. Journal of Dairy Science 106(1):274–93. doi: 10.3168/jds.2022-22110
  21. Kulikova, M.V. & G.Y. Kulikov. 2022. Square-Root Filtering via Covariance SVD Factors in the Accurate Continuous-Discrete Extended-Cubature Kalman Filter. Applied Numerical Mathematics 171:32–44. doi: 10.1016/j.apnum.2021.08.013
  22. Lamb, G. C., & V. R. G. Mercadante. 2016. Synchronization and Artificial Insemination Strategies in Beef Cattle. Veterinary Clinics of North America - Food Animal Practice 32(2):335–47. doi: 10.1016/j.cvfa.2016.01.006
  23. Letelier, P., H. A. Aguirre-Villegas, M.C. Navarro & M. A. Wattiaux. 2022. Milk, Meat, and Human Edible Protein from Dual-Purpose Cattle in Costa Rica: Impact of Functional Unit and Co-Product Handling Methods on Predicted Enteric Methane Allocation. Livestock Science 263(June). doi: 10.1016/j.livsci.2022.105013
  24. Lima, E., M. Green, F. Lovatt, P. Davies, L.King & J. Kaler. 2020. Use of Bootstrapped, Regularised Regression to Identify Factors Associated with Lamb-Derived Revenue on Commercial Sheep Farms. Preventive Veterinary Medicine 174 (November 2019):104851. doi: 10.1016/j.prevetmed.2019.104851
  25. Little, M. W., N. E. O’Connell, M. D. Welsh, F. J. Mulligan & C. P. Ferris. 2017. Concentrate Supplementation of a Diet Based on Medium-Quality Grass Silage for 4 Weeks Prepartum: Effects on Cow Performance, Health, Metabolic Status, and Immune Function. Journal of Dairy Science 100(6):4457–74. doi: 10.3168/jds.2016-11806
  26. Liu, Y., M.U. Arshad, B. Aruhan, R. Lanneau & Y Jianguo. 2023. Promotion and Sustainable Development of Beef Cattle Farming Industry in Agro-Pasture Ecotone Areas, Inner Mongolia of China: A Comparison between Two Fattening Systems. Heliyon 9(1). doi: 10.1016/j.heliyon.2022.e12721
  27. Martin, G., K. Barth, M. Benoit, C. Brock, M. Destruel, B. Dumont, M. Grillot, S. Hübner, Marie A. Magne, M.Moerman, C.Mosnier, D. Parsons, B.Ronchi, L. Schanz, L. Steinmetz, S. Werne, C.Winckler, & R Primi. 2020. Potential of Multi-Species Livestock Farming to Improve the Sustainability of Livestock Farms: A Review. Agricultural Systems 181(December 2019). doi: 10.1016/j.agsy.2020.102821
  28. McCarthy, M. C., L. O’Grady, C. G. McAloon, and J. F. Mee. 2021. A Survey of Biosecurity and Health Management Practices on Irish Dairy Farms Engaged in Contract-Rearing. Journal of Dairy Science 104(12):12859–70. doi: 10.3168/jds.2021-20500
  29. Miller-Cushon, E. K., and T. J. DeVries. 2017. Feed Sorting in Dairy Cattle: Causes, Consequences, and Management. Journal of Dairy Science 100(5):4172–83. doi: 10.3168/jds.2016-11983
  30. Mohammed, A. 2018. Artificial Insemination and Its Economical Significancy in Dairy Cattle: Review. International Journal of Research Studies in Microbiology and Biotechnology 4(1). doi: 10.20431/2454-9428.0401005
  31. Moore, S. G., S. A. Hamilton, R. Molina-Coto, L. M. Mayo, R. O. Rodrigues, T. Leiva, S. E. Poock, and M. C. Lucy. 2021. Reproductive Performance of Early- and Late-Calving Dairy Cows Artificially Inseminated after Ovulation Synchronization and Estrous Resynchronization or Artificially Inseminated after Observed Estrus. JDS Communications 2(2):80–85. doi: 10.3168/jdsc.2020-0035
  32. Moseley, W.G. 2022. Development Assistance and Boserupian Intensification under Geopolitical Isolation: The Political Ecology of a Crop-Livestock Integration Project in Burundi. Geoforum 128(January):276–85. doi: 10.1016/j.geoforum.2021.01.010
  33. Mutenje, M., U. Chipfupa, W. Mupangwa, I. Nyagumbo, G. Manyawu, I. Chakoma, and L. Gwiriri. 2020. Understanding Breeding Preferences among Small-Scale Cattle Producers: Implications for Livestock Improvement Programmes. Animal 14(8):1757–67. doi: 10.1017/S1751731120000592
  34. Ningsi, R., A. Asnawi & A. Abdullah. 2020. Effect of Intrinsic Factors on Farmers’ Willingness to Pay on the Success of Artificial Insemination of Bali Cattle. IOP Conference Series: Earth and Environmental Science 492(1). doi: 10.1088/1755-1315/492/1/012161
  35. Odubote, I. K. 2022. Characterization of Production Systems and Management Practices of the Cattle Population in Zambia. Tropical Animal Health and Production 54(4):1–11. doi: 10.1007/s11250-022-03213-8
  36. Ouatahar, L., A.Bannink, G.Lanigan & B. Amon. 2021. Modelling the Effect of Feeding Management on Greenhouse Gas and Nitrogen Emissions in Cattle Farming Systems. Science of the Total Environment 776:145932. doi: 10.1016/j.scitotenv.2021.145932
  37. Purwanto, A. & Y. Sudargini. 2021. Partial Least Squares Structural Squation Modeling ( PLS-SEM) Analysis for Social and Management Research : A Literature Review Agus Purwanto Journal of Industrial Engineering & Management Research. AGUSPATI Research Institute, Indonesia - SMA Negeri 1, Pati 2(4):114–23
  38. Rajawat, D., M. Panigrahi, H. Kumar, S. S. Nayak, S. Parida, B. Bhushan, G. K. Gaur, T. Dutt & B. P. Mishra. 2022. Identification of Important Genomic Footprints Using Eight Different Selection Signature Statistics in Domestic Cattle Breeds. Gene 816(December 2021):146165. doi: 10.1016/j.gene.2021.146165
  39. Rauthan, A., P. Mehta, P. Nautiyal, S. Jayara, S. Nautiyal, R. Bhaskar, & A. Semwal. 2022. Process and Importance of Artificial Insemination in Cows. International Journal of Veterinary Science and Agriculture Research 4(January)
  40. Reichhardt, C. C., R.Feuz, T. J. Brady, L. A. Motsinger, R. K. Briggs, B. R. Bowman, M. D. Garcia, R. Larsen & K. J. Thornton. 2021. Interactions between Cattle Breed Type and Anabolic Implant Strategy Impact Circulating Serum Metabolites, Feedlot Performance, Feeding Behavior, Carcass Characteristics, and Economic Return in Beef Steers. Domestic Animal Endocrinology 77:106633. doi: 10.1016/j.domaniend.2021.106633
  41. Sarkar, A., J.A. Azim, A. Al-Asif, L. Qian & A.K. Peau. 2021. Structural Equation Modeling for Indicators of Sustainable Agriculture: Prospective of a Developing Country’s Agriculture. Land Use Policy 109(June):105638. doi: 10.1016/j.landusepol.2021.105638
  42. Sharma, V., A.K. Tripathi & H. Mittal. 2022. Technological Revolutions in Smart Farming: Current Trends, Challenges & Future Directions. Computers and Electronics in Agriculture 201(July):107217. doi: 10.1016/j.compag.2022.107217
  43. Sheridan, A., L. Newsome, T. Howard, A. Lawson & S. Saunders. 2021. Intergenerational Farm Succession: How Does Gender Fit? Land Use Policy 109(June):105612. doi: 10.1016/j.landusepol.2021.105612
  44. Singh, I. &A. K. Balhara. 2016. New Approaches in Buffalo Artificial Insemination Programs with Special Reference to India. Theriogenology 86(1):194–99. doi: 10.1016/j.theriogenology.2016.04.031
  45. Vartia, K., J. Taponen, J. Heikkinen & H. Lindeberg. 2017. Effect of Education on Ability of AI Professionals and Herd-Owner Inseminators to Detect Cows Not in Oestrus and Its Relation with Progesterone Concentration on Day of Re-Insemination. Theriogenology 102:23–28. doi: 10.1016/j.theriogenology.2017.07.007
  46. Velasco, E., J. Werner & U. Dickhoefer. 2023. On-Farm Evaluation of Models to Predict Herbage Intake of Dairy Cows Grazing Temperate Semi-Natural Grasslands. Animal 100806. doi: 10.1016/j.animal.2023.100806
  47. Wang, Y., S. Mücher, W.Wang, L. Guo & L. Kooistra. 2023. A Review of Three-Dimensional Computer Vision Used in Precision Livestock Farming for Cattle Growth Management. Computers and Electronics in Agriculture 206(January):107687. doi: 10.1016/j.compag.2023.107687
  48. Yasar, M., C. Siwar, & R. B. Firdaus. 2015. Assessing Paddy Farming Sustainability in the Northern Terengganu Integrated Agricultural Development Area (IADA KETARA): A Structural Equation Modelling Approach. Pacific Science Review B: Humanities and Social Sciences 1(2):71–75. doi: 10.1016/j.psrb.2016.05.001

Last update:

No citation recorded.

Last update:

No citation recorded.