skip to main content

SOCIAL ECONOMIC FACTORS AFFECTING THE TECHNICAL INEFFICIENCY OF SHALLOTS IN MALANG DISTRICT

*Sri Hindarti  -  Agribussines, University of Islam Malang, East Java, Indonesia, Indonesia
Arief Joko Saputro  -  Agribussines, University of Islam Malang, East Java, Indonesia, Indonesia
Lia Rohmatul Maula  -  Agribussines, University of Islam Malang, East Java, Indonesia, Indonesia
Open Access Copyright 2023 Agrisocionomics: Jurnal Sosial Ekonomi Pertanian under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The trend of the need for shallots in Indonesia from year to year for consumption increased during 2005-2018. The increasing demand for shallots every year requires efforts to increase production quantity to meet the needs of shallots and reduce the number of imports. On average, onion farmers have not achieved efficient farming, so their farming is not optimal in increasing the amount and value of income which is heavily influenced by socioeconomic factors of farmers. The purpose of this study is to analyze technical efficiency and analyze socioeconomic factors that affect the technical inefficiency of shallot farmers. The method used is the DEA VRS Efficiency Model and Tobit regression analysis. The results show that the average technical efficiency of shallot farmers is total technical efficiency (TE CRS) 0.700, pure technical efficiency (TE VRS) 0.837, and scale efficiency 0.830. Factors influencing the technical inefficiency of shallot farmers in Malang district include land area, farmer groups, farming experience, and farmers' income.

Fulltext View|Download
Keywords: social, economic, inefficiency, DEA, shallot

Article Metrics:

  1. Ali, A., & Jan, A. U. (2017). Analysis of Technical Efficiency of Sugarcane Crop in Khyber Pakhtunkhwa: A Stochastic Frontier Approach. Sarhad Journal of Agriculture, 33(1), 69–79. https://doi.org/10.17582/journal.sja/2017.33.1.69.79
  2. Ambetsa, L. F., Mwangi, S. C., & Ndirangu, S. N. (2020). Technical efficiency and its determinants in sugarcane production among smallholder sugarcane farmers in Malava sub-county, Kenya. African Journal of Agricultural Research, 15(3), 351–360. https://doi.org/10.5897/ajar2020.14703
  3. Anh Ngoc, P. T., Gaitán-Cremaschi, D., Meuwissen, M. P. M., Le, T. C., Bosma, R. H., Verreth, J., & Lansink, A. O. (2018). Technical inefficiency of Vietnamese pangasius farming: A data envelopment analysis. Aquaculture Economics and Management, 22(2), 229–243. https://doi.org/10.1080/13657305.2017.1399296
  4. Badan Pusat Statistik (BPS). Produksi, Konsumsi dan Luas Lahan Bawang Merah Tahun 2021
  5. Banker, RD., A., Charnes and WW., Cooper. 1984. “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science 30(9): 1078-1092
  6. Battese, G., dan T., Coelli. 1995. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empirical Economic Journal. (1995) 20:325-332
  7. Debebe, S., Haji, J., Goshu, D., & Edriss, A. K. (2015). Technical, allocative, and economic efficiency among smallholder maize farmers in Southwestern Ethiopia: Parametric approach. Journal of Development and Agricultural Economics, 7(8), 282–291. https://doi.org/10.5897/jdae2015.0652
  8. Lasmini, F., Nurmalina, R., & Rifin, A. (2016). Efisiensi Teknis Usaha tani Padi Petani Peserta dan Petani Nonpeserta Program SL-PTT di Kabupaten Sukabumi. Jurnal Manajemen Dan Agribisnis, 13(1), 59–68. https://doi.org/10.17358/jma.13.1.59
  9. Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega (United Kingdom), 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004
  10. Musaba, E., & Bwacha, I. (2014). Technical Efficiency of Small Scale Maize Production in Masaiti District , Zambia : A Stochastic Frontier Approach. Journal of Economics and Sustainable Development, 5(4), 104–111
  11. Nargis, F., & Lee, S. H. (2013). Efficiency analysis of boro rice production in north-central region of Bangladesh. Journal of Animal and Plant Sciences, 23(2), 527–533
  12. Ningsih, I. M., Dwiastuti, R., & Suhartini, S. (2015). Determinan Efisiensi Teknis Usaha Tani Kedelai. Jurnal Manajemen Dan Agribisnis, 12(3), 216–225. https://doi.org/10.17358/jma.12.3.216
  13. Poudel, K. L., Johnson, T. G., Yamamoto, N., Gautam, S., & Mishra, B. (2015). Comparing technical efficiency of organic and conventional coffee farms in rural hill region of Nepal using data envelopment analysis (DEA) approach. Organic Agriculture, 5(4), 263–275. https://doi.org/10.1007/s13165-015-0102-x
  14. Saputro, A. J., Hanani, N., & Fahriyah, F. (2021). Kinerja Dan Ukuran Usahatani Tebu Di Kabupaten Malang Jawa Timur. Jurnal Ekonomi Pertanian Dan Agribisnis (JEPA), 5(4), 1280–1289. https://doi.org/https://doi.org/10.21776/ub.jepa.2021.005.04.29
  15. Suryani, S. 2012. Teknologi Pengembangan Bawang Merah di Kawasan Danau Toba. BPTP Sumatera Utara. Medan. Sinar Tani Edisi XLII:3439
  16. Ullah, A., Silalertruksa, T., Pongpat, P., & Gheewala, S. H. (2019). Efficiency analysis of sugarcane production systems in Thailand using data envelopment analysis. Journal of Cleaner Production, 238, 117877. https://doi.org/10.1016/j.jclepro.2019.117877
  17. Wulandari, S. T., Wildayana, E., & Aryani, D. (2022). Farmers’ Perceptions Of The Role Of Gapoktan In The Implementation Of Serasi Program In Tanjung Lago District, Banyuasin Regency. Jurnal Sosial Ekonomi Dan Kebijakan Pertanian, 6(1), 9–22

Last update:

No citation recorded.

Last update:

No citation recorded.