skip to main content

Dynamic Models for Seaweed Cultivation Development in The Waters of Luwu and Palopo Regency, South Sulawesi

*Waluyo Waluyo  -  Politeknik Kelautan dan Perikanan Karawang, Indonesia
Yonvitner Yonvitner  -  Faculty of Marine and Fisheries, IPB University, Indonesia
Etty Riani  -  Faculty of Marine and Fisheries, IPB University, Indonesia
Taslim Arifin  -  Marine Research Center, Ministry of Marine Affairs and Fisheries, Indonesia

Citation Format:
Abstract

Waters carrying capacity in the seaweed of Eucheuma cottonii cultures should be a concern for optimum seaweed culture. Carrying capacity can determine by Ecological Footprint (EF) analysis, which in this research use footprint production, and mas balance nitrate analysis. This research on Mei 2015 (1st transitional season) and September 2015 (2nd transitional season) in Luwu and Palopo, South Sulawesi. Map and land use analyzed with geographic information systems (GIS). The results showed that the Ecological Footprint Production (EFP) in Luwu waters is 67,88 ton/capita/year, or equivalent to 235,823.93 tons/year. Based on the analysis of the availability of water for seaweed is 38,374.69 hectares, it can produce seaweed (biocapacity) for 922,928.96 tons/year and the number of farmers that allows for use the waters is 13,595 capita. The Ecological Footprint Production (EFP) in Palopo waters is 3.08 ton/capita/year, or equivalent to 4,589.99 tons/year. Water availability analysis is 979.82 hectares can produce seaweed (biocapacity) for 10,115.34 ton/year and the number of farmers that allows for use the waters is 3,276 capita. Based on the four scenario simulation management results of the development seaweed cultivation Eucheuma cottonii in Luwu and Palopo Regency is based on the present waste input, pressing inputs of waste into the waters of 10%, 25% and 50% yield different waters biocapacity. The results comparison between biocapacity and Ecological Footprint, ecological status for Luwu and Palopo waters are still in sustainable use. Based on those simulation results showed that in the second scenario by pressing the waste input by 10% from the existing waste input, as well as assuming the availability of water utilizing the entire area of 38,374.69 hectares continuously (on the years scale of 2008-2030), it will produce the highest biocapacity waters in the amount of 8,257,274.94 tons/year. So with the management of seaweed in Palopo with the second scenario, assuming the availability of water utilizing the entire area of 979.82 hectares will produce the highest waters biocapacity of 14,306.92 tons/year.

Fulltext View|Download
Keywords: Dynamic models; seaweed cultivation; ecological footprint; waters carrying capacity; mass balance nitrate

Article Metrics:

  1. Adrianto L. 2010. Fishery resources appropriation as sustainability indicator: An ecological footprint approach. Bogor: PKSPL IPB
  2. Albin S. 1997. Building a system dynamics model. Part 1: Conceptualization. Prepared for the MIT system dynamics in education project under the supervision of Dr. Jay W. Forrester. Massachusetts Institute of Technology. D-4597
  3. Alstyne KLV, Pelletreau KN. 2000. Effects of nutrient enrichment on growth and phlorotannin production in Fucus gardneri embryos. J Mar Ecol Prog Ser, 206: 33-43
  4. [AMWQ] ASEAN Marine Water Quality. 2008. Management guidelines and monitoring manual. Jakarta: The ASEAN Secretariat
  5. [APHA] American Public Health Association. 1998. Standard methods for the examination of water and wastewater (20th Edition ed.). Washington D.C. USA
  6. Bastianoni S, Niccolucci V, Neri E, Cranston G, Galli A, Wackernagel M. 2013. Sustainable development: Ecological Footprint in accounting. in Encyclopedia of environmental management. New York: Taylor and Francis, (2013):2467-2481
  7. Boyd CE dan Lichtkoppler F, 1982. Water quality management in pond fish culture. (4th Edition ed.). International Center for Aquaculture, Agriculture Experiment Station, Auburn, USA
  8. [BPS] Badan Pusat Statistik. 2010. Kabupaten Luwu Dalam Angka Tahun 2010. Belopa: BPS Kab. Luwu
  9. [BPS] Badan Pusat Statistik. 2014. Kabupaten Luwu Dalam Angka Tahun 2014. Belopa: BPS Kab. Luwu
  10. [BPS] Badan Pusat Statistik Kota Palopo. 2014. Kota Palopo Dalam Angka Tahun 2013. Palopo: BPS Kota Palopo
  11. Ding L, Ma Y, Huang B, Chen S. 2013. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). (Lin H, Ed). Hindawi Publishing Corporation. J BioMed Research International, 2013:10
  12. [DKP] Dinas Kelautan dan Perikanan Kabupaten Luwu. 2011. Analisis lokasi unggulan untuk pengembangan budidaya rumput laut (Eucheuma cottonii) di perairan pesisir Kabupaten Luwu, Belopa: DKP Kab. Luwu
  13. [DKP] Dinas Kelautan dan Perikanan Kabupaten Luwu. 2014. Kajian pembentukan Daerah Perlindungan Laut (DPL) Kabupaten Luwu. Belopa: DKP Kab. Luwu
  14. [DKP] Dinas Kelautan dan Perikanan Kabupaten Luwu. 2015. Laporan tahunan perikanan Kabupaten Luwu tahun 2010-2014. Belopa: DKP Kab. Luwu
  15. [DKP] Dinas Kelautan dan Perikanan Kota Palopo. 2015. Laporan tahunan DKP Kota Palopo tahun 2010-2014. Palopo: DKP Kota Palopo
  16. Fong P, Paul VJ. 2011. Coral reef algae. in Z. Dubinsky and N. Stambler, editors. Coral reefs: an ecosystem in transition. Springer, 241-272
  17. Glenn EP, Doty MS. 1981. Photosynthesis and respiration of the tropical red seaweeds, Eucheuma Striatum (Tambalang and Elkhorn Varieties) and E. denticulatum. J Aquatic Botany, 10:353-364
  18. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE. 2011. Nutrient co-limitation of primary producer communities. J Ecology Letters, 14:852-62
  19. Harrison PJ, Hurd CL. 2001. Nutrient physiology of seaweeds : Application of concepts to aquaculture. J Cahiers de Biologie Marine, 42:71-82
  20. Hayashi L, Faria GSM, Nunes BG, Zitta CS, Scariot LA, Rover T, Felix MRL, Bouzon ZL, 2010. Effects of salinity on the growth rate, carrageenan yield, and cellular structure of Kappaphycus Alvarezii (Rhodophyta, Gigartinales) cultured in vitro. Journal of Applied Phycology, 23(3):439-447
  21. Hurd CL, Harrison PJ, Druehl LD. 1996. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wavesheltered and exposed sites. J Mar Biol, 126:205–214
  22. Hurd CL, Harrison PJ, Bischof K, Lobban CS. 2014. Seaweed ecology and physiology. (2th Edition ed.). Cambridge: Cambridge University Press
  23. Isee System. 2016. Technical document for the iThink and STELLA Software. Available at: http://www.iseesystems.com. Accessed 17 February 2016
  24. Kapraun DF. 1978. Field and culture studies on growth and reproduction of Callithamnion byssoides (Rhodophyta, Ceramiales) in North Carolina. J. Phycol, 14:21-24
  25. Kawabe M, Kawabe M. 1997. Temporal and spatial characteristics of chemical oxygen demand in Tokyo Bay. Journal of Oceanography, (53):443-453
  26. [KLH] Kementerian Lingkungan Hidup R.I. 1988. Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup Nomor 02 Tahun 1988 tentang Pedoman Penetapan Baku Mutu Lingkungan. Jakarta
  27. [KLH] Kementerian Lingkungan Hidup R.I. 2004. Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup Nomor 51 Tahun 2004 tentang Baku Mutu Air Laut. Jakarta
  28. MacLeod M, Cooper JAG. 2005. Carrying capacity in coastal areas. Encyclopedia of Coastal Science. Springer: Schwartz M. (Ed.)
  29. Mairth OP, Zodape ST, Tewari A, Rajyaguru MR. 1995. Culture of marine red alga Kappaphycus Striatum (Schmitz) Doty on the Saurashtra Region, West Coast of India. Indian J. Mar. Sci, 24:24-31
  30. Nybakken JW. 1992. Biologi laut suatu pendekatan ekologis. Jakarta: Gramedia
  31. [PERDA] Peraturan Daerah Kabupaten Luwu. 2011. Rencana Tata Ruang Wilayah Kabupaten Luwu 2011 – 2031
  32. [PHILMINAQ] Mitigating Impact from Aquaculture in the Philippines. Annex 2. 2006. Water Quality Criteria and Standards for Freshwater and Marine Aquaculture http://www.aquaculture.asia/files/PMNQ%20 WQ%20standard%202.pdf. Accessed 20 December 2015
  33. Prahasta E. 2002. Konsep-konsep dasar sistem informasi geografis. Bandung: CV Informatika
  34. Prema D. 2013. Site selection and water quality in mariculture. Central Marine Fisheries Research Institute. CMFRI Manuel Customized training Book. Kerala. India
  35. Randers J. 1980. Elements of the system dynamics method. Portland : Productivity Press. 344 pp
  36. Redmond S, Green L, Yarish C, Kim J, Neefus C. 2014. New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG-14-01. 92 pp
  37. Rees WE. 1992. Ecological Footprint and appropriated carrying capacity : what urban economics leaves out. J Environment and urbanization, 4:2
  38. Rees WE. 1996. Revisiting carrying capacity: area-based indicators of sustainability. J Population and Environment, (17):195-215
  39. Riani E. 2012. Perubahan iklim dan kehidupan biota akuatik (Dampak pada bioakumulasi bahan berbahaya dan beracun & reproduksi). Institut Pertanian Bogor: IPB Press
  40. Samawi MH. 2007. Desain sistem pengendalian pencemaran pantai kota (studi kasus perairan pantai Kota Makassar) [tesis]. Bogor: Institut Pertanian Bogor
  41. Sastrawijaya AT. 2000. Pencemaran Lingkungan. Jakarta: Rineka Cipta
  42. Setiyanto D, Efendi I, Antara KJ. 2008. Pertumbuhan Kappaphycus alvarezii var Maumare, var Sacol dan Eucheuma cottonii di Perairan Musi Buleleng. Jurnal Ilmu Kelautan, 13(3):171-176
  43. Shanmugam P, Neelamani S, Hwan Ahn Y, Philip L, Hoon Hong G. 2006. Assessment of the levels of coastal marine pollution of Chennai city, Southern India. J Water Resour Manage, DOI 10.1007/s11269-006-9075-6
  44. [UNEP] United Nations Environment Programme. 1996. Carrying capacity assessment for tourism development. Coastal Area Management Programme (CAMP). FUKA-MATROUH. Egypt
  45. Wackernagel M. 1994. Ecological Footprint and appropriated carrying capacity: a tool for planning toward sustainability [dissertation]. Vancouver, Canada: School of Community and Regional Planning. The University of British Columbia
  46. Wackernagel M, Rees WE. 1996. Sharring nature interest. London: Earth Scan Publication. 186p
  47. Widigdo B, Pariwono J. 2003. Daya dukung perairan di pantai utara Jawa Barat untuk budidaya udang (Studi kasus di Kabupaten Subang, Teluk Jakarta dan Serang). Jurnal Ilmu-Ilmu Perairan dan Perikanan Indonesia, 1:10-17
  48. Yong WTL, Ting SH, Yong YS, Thien VY, Wong SH, Chin WL, Rodrigues KF, Anton A. 2013. Optimization of culture conditions for the direct regeneration of Kappaphycus alvarezii (Rhodophyta, Solieriaceae). J Appl Phycol. DOI 10.1007
  49. [YSI Inc] Yellow Springs Instrument Incorporated. 2006. The basics of chlorophyll measurement. In YSI Environmental. Tech Note. Retrieved from http://www.ysi.com/media/pdfs/T606-The-Basics-of-Chlorophyll-Measurement.pdf
  50. Zang H, Li L, Zou Z. 2015. The research of seawater chemical oxygen demand measurement technology with ozone oxidation method. Shao F, Shu W and Tian T (Eds). Proceedings of the 2015 International Conference on Electric, Electronic and Control Engineering. London : Taylor & Francis Group. 787

Last update: 2021-07-24 11:35:43

No citation recorded.

Last update: 2021-07-24 11:35:43

No citation recorded.