skip to main content

Pengaruh Tata Bangunan dan Jalan Terhadap Aliran Udara Pada Kawasan Perkotaan

*Lestari Lestari  -  Department of Architecture, Universitas Tanjungpura, Indonesia
Syaiful Muazir scopus  -  Department of Architecture, Universitas Tanjungpura, Indonesia

Citation Format:
Abstract
Designing configuration of buildings and streets in an urban area by maximizing air movement is an approach of the sustainable city. The existing buildings and streets of an urban area can affect the microclimate formed, including the airflow. The airflow can be used to create a comfortable city environment. Jalan Gajahmada is one of the economic strategic areas in Pontianak City which requires a comfortable condition to support activities there. The airflow that occurs in Gajahmada Street affects the conditions that occur now. This paper aims to provide an overview of airflow conditions on Gajahmada Street Area. The research method is through computer simulations using the Envi-Met simulation program. The data used local climate data and field data based on surveys. Through the analysis, it is known that the airflow is strongly influenced by the direction of the wind, the surface mass of the building and the ratio between the height of the building to the width of the streets that is formed from the distance between building masses (H / W).
Fulltext View|Download
Keywords: street; building; airflow; Pontianak
Funding: Faculty of Engineering, Universitas Tanjungpura

Article Metrics:

  1. Achour-Younsi, S., & Kharrat, F. (2016). Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate – Case Study Tunis, Tunisia. Procedia - Social and Behavioral Sciences, 216(October 2015), 689–700. https://doi.org/10.1016/j.sbspro.2015.12.062
  2. Anggreni, R., Muliadi, & Adriat, R. (2018). Analisis Pengaruh Tutupan Awan Terhadap Radiasi Matahari di Kota Pontianak. Prisma Fisika, 6(3), 214–219
  3. Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., Robins, A., & ApSimon, H. (2018). How Tall Buildings Affect Turbulent Air Flows and Dispersion of Pollution Within a Neighbourhood. Environmental Pollution, 233, 782–796. https://doi.org/10.1016/j.envpol.2017.10.041
  4. Blocken, B., Stathopoulos, T., & van Beeck, J. P. A. J. (2016). Pedestrian-Level Wind Conditions Around Buildings: Review of Wind-Tunnel and CFD Techniques and Their Accuracy for Wind Comfort Assessment. Building and Environment, 100, 50–81. https://doi.org/10.1016/j.buildenv.2016.02.004
  5. Bourbia, F., & Boucheriba, F. (2010). Impact of Street Design on Urban Microclimate for Semi Arid Climate (Constantine). Renewable Energy, 35(2), 343–347. https://doi.org/10.1016/j.renene.2009.07.017
  6. Chatzidimitriou, A., & Axarli, K. (2017). Street Canyon Geometry Effects on Microclimate and Comfort; A Case Study in Thessaloniki. Procedia Environmental Sciences, 38, 643–650. https://doi.org/10.1016/j.proenv.2017.03.144
  7. Elnabawi, M., Hamza, N., & Dudek, S. (2013). Use and Evaluation of the ENVI-MET Model for Two Different Urban Forms in Cairo, Egypt : Measurements and Model. 13th Conference of Internatioanl Building Performance Simulation Association, 2800–2806
  8. Erell, E., Pearlmutter, D., & Williamson, T. (2011). Urban Microclimate Designing the Spaces Between Buildings. Taylor & Francis
  9. Heidarinejad, M., Nikkho, S. K., Liu, J., Mattise, N., & Srebric, J. (2017). Quantify Impacts of Local Urban Microclimate on Local Airflow Patterns. Procedia Engineering, 205, 1983–1989. https://doi.org/10.1016/j.proeng.2017.10.067
  10. Kakon, A., & Nobuo, M. (2009). The Sky View Factor Effect on the Microclimate of a City Environment: A Case Study of Dhaka City. 7th International Conference on Urban Climate, April 2008, 7–10. http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384760-1-090513144446-003.pdf
  11. Langer, I., Sodoudi, S., & Cubasch, U. (2012). Using the ENVI-MET Program to Simulate the Micro Climate in New Town HASHTGERD. The International Conference On Computing, Networking and Digital Technologies, 61–64. https://doi.org/10.13140/2.1.1739.2005
  12. Pontianak, P. K. (2013). Peraturan Daerah Kota Pontianak No 2 Tahun 2013 Tentang Rencana Tata Ruang Wilayah Kota Pontianak Tahun 2013-2033 (pp. 37–39). Sekretaris Daerah Pemerintah Kota Pontianak
  13. Pontianak, P. K. (2019). Kondisi Geografis Kota Pontianak. https://www.pontianakkota.go.id/tentang/geografis [Accessed 21 Mei 2019]
  14. Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2016). Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 45(1), 167–174. https://doi.org/10.2134/jeq2015.01.0039
  15. Shafaghat, A., Manteghi, G., Keyvanfar, A., Bin Lamit, H., Saito, K., & Ossen, D. R. (2016). Street Geometry Factors Influence Urban Microclimate in Tropical Coastal Cities: A Review. Environmental and Climate Technologies, 17(1), 61–75. https://doi.org/10.1515/rtuect-2016-0006
  16. Shashua-Bar, L., Tzamir, Y., & Hoffman, M. E. (2004). Thermal Effects of Building Geometry and Spacing on the Urban Canopy Layer Microclimate in a Hot-Humid Climate in Summer. International Journal of Climatology, 24(13), 1729–1742. https://doi.org/10.1002/joc.1092
  17. Shishegar, N. (2013). Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflowand Solar Access in Urban Canyons. Journal of Clean Energy Technologies, 1(1), 52–56. https://doi.org/10.7763/jocet.2013.v1.13
  18. Szokolay, S. V. (2008). Introduction to Architectural Science - The Basis of Sustainable Design. Architectural Press
  19. Zhang, Y. W., Gu, Z. L., Cheng, Y., & Lee, S. C. (2011). Effect of Real-Time Boundary Wind Conditions on The Air Flow and Pollutant Dispersion in an Urban Street Canyon-Large Eddy Simulations. Atmospheric Environment, 45(20), 3352–3359. https://doi.org/10.1016/j.atmosenv.2011.03.055

Last update:

No citation recorded.

Last update:

No citation recorded.