skip to main content

Pemetaan Daya Dukung Lingkungan Penyedia Air Bersih Berbasis Jasa Ekosistem di Tarempa Kabupaten Anambas

*Erik Febriarta orcid  -  Magister Pengelolaan Pesisir dan Daerah Aliran Sungai, Fakultas Geografi, Universitas Gadjah Mada, Indonesia
Lulu Mari Fitria  -  Program Studi Perencanaan Wilayah dan Kota, Institut Teknologi Nasional Yogyakarta, Yogyakarta, Indonesia
Karina Bunga Hati  -  Magister Pengelolaan Pesisir dan Daerah Aliran Sungai, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
Ahmad Ghazali  -  Mitra Geotama Indonesia, Yogyakarta, Indonesia
Deni Agus Setyono  -  Jurusan Perencanaan Wilayah dan Kota, Fakultas Teknik, Universitas Brawijaya, Malang, Indonesia
Rakyan Paksi Nagara  -  Pusat Pemetaan Tata Ruang dan Atlas, Badan Informasi Geospasial, Bogor, Indonesia
Open Access Copyright (c) 2022 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

Carrying capacity of the environment is a condition of the physical ability of the environment to be utilized and manageable to meet the needs of life and development of an area. Water resources are a basic need for human activities and living things around them. The environmental carrying capacity of the supply factor in the form of clean water is part of the strategic steps for environmental management and protection in the Anambas Islands. The study aims to determine the level of environmental carrying capacity of clean water supply factors. The study was conducted using the ecosystem service method. The parameters used for the calculation of carrying capacity are the ecoregion which provides information on the physical condition of the landscape with the same characteristics and characteristics, the land cover which provides corrections to land-based economy activities and hydrogeological conditions, which provide information on the availability of groundwater and the potential for water productivity. The three environmental data scores and weight values are graded using the analytical hierarchy process (AHP) and then are calculated linearly for all these variables, resulting in an environmental services index value. The value of environmental services is grouped into five classes, so it is known that the environmental carrying capacity of clean water providers on Siantan Island is 32.9% very high carrying capacity, 1.36% high carrying capacity, 6.2% medium carrying capacity, low carrying capacity 21 %, and the carrying capacity is very low 38.5%. In general, the environmental conditions of clean water providers on Siantan Island are very low.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Pemetaan Daya Dukung Lingkungan Penyedia Air Bersih Berbasis Jasa Ekosistem Di Tarempa Kabupaten Anambas
Subject
Type Other
  Download (6MB)    Indexing metadata
Keywords: analytical hierarchy process (AHP); carrying capacity; clean water; ecosystem services

Article Metrics:

  1. Akhtar, M., Zhao, Y., Gao, G., Gulzar, Q., Hussain, A., & Samie, A. (2020). Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan. Regional Sustainability, 1(1), 37–47. doi: 10.1016/j.regsus.2020.06.001
  2. Anibas, C., Kukral, J., Possemiers, M., & Huysmans, M. (2016). Assessment of seasonal aquifer thermal energy storage as a groundwater ecosystem service for the Brussels-Capital Region: Combining groundwater flow, and heat and reactive transport modeling. Energy Procedia, 97, 179–185. doi: 10.1016/j.egypro.2016.10.048
  3. Anim-Gyampo, M., Anornu, G. K., Appiah-Adjei, E. K., & Agodzo, S. K. (2019). Quality and health risk assessment of shallow groundwater aquifers within the Atankwidi basin of Ghana. Groundwater for Sustainable Development, 9, 100217. doi: 10.1016/j.gsd.2019.100217
  4. Anzaldua, G., Gerner, N. V., Lago, M., Abhold, K., Hinzmann, M., Beyer, S., … Birk, S. (2018). Getting into the water with the ecosystem services approach: The DESSIN ESS evaluation framework. Ecosystem Services, 30, 318–326. doi: 10.1016/j.ecoser.2017.12.004
  5. Badan Standardisasi Nasional (BSN). (2002). Penyusunan neraca sumber daya – bagian 1: Sumber daya air spasial SNI 19-6728.1-2002. Badan Standardisasi Nasional (BSN). Jakarta, Indonesia: Badan Standardisasi Nasional (BSN)
  6. Badan Standardisasi Nasional (BSN). (2005). Penyelidikan potensi air tanah skala 1 : 100 . 000 atau lebih besar SNI 13-7121-2005. Jakarta, Indonesia: Badan Standardisasi Nasional (BSN)
  7. Bagstad, K. J., Cohen, E., Ancona, Z. H., McNulty, S. G., & Sun, G. (2018). The sensitivity of ecosystem service models to choices of input data and spatial resolution. Applied Geography, 93, 25–36. doi: 10.1016/j.apgeog.2018.02.005
  8. Bhakar, P., & Singh, A. P. (2018). Life cycle assessment of groundwater supply system in a hyper-arid region of India. Procedia CIRP, 69, 603–608. doi: 10.1016/j.procir.2017.11.050
  9. Bappeda Kabupaten Meranti. (2017). Daya dukung dan daya tampung lingkungan hidup Kabupaten Meranti. Selat Panjang: Badan Perencanaan Pembangunan Daerah (BAPPEDA) Kabupaten Kepulauan Meranti
  10. BIG. (2018a). DEMNAS 1219-6 s/d DEMNAS 1320-21. Indonesia: Badan Informasi Geospasial
  11. BIG. (2018b). Penyusunan peta rencana detail tata ruang (RDTR) Wilayah Pusat Kawasan Strategis Nasional (PKSN) Perbatasan Negara (Laporan Ak; D. B. IGT, Ed.). Bogor: Badan Informasi Geospasial
  12. BIG. (2018c). Peta digital Kabupaten Kepulauan Anambas. Bogor: Badan Informasi Geospasial (BIG)
  13. Broszeit, S., Beaumont, N. J., Hooper, T. L., Somerfield, P. J., & Austen, M. C. (2019). Developing conceptual models that link multiple ecosystem services to ecological research to aid management and policy, the UK marine example. Marine Pollution Bulletin, 141, 236–243. doi: 10.1016/j.marpolbul.2019.02.051
  14. Brykała, D., & Podgórski, Z. (2020). Evolution of landscapes influenced by watermills, based on examples from Northern Poland. Landscape and Urban Planning, 198, 103798. doi: 10.1016/j.landurbplan.2020.103798
  15. BSN. (2014). Standar Nasional Indonesia (SNI) nomor 7645-1:2014 tentang klasifikasi penutup lahan-bagian 1: skala kecil dan menengah. Jakarta, Indonesia: Badan Standardisasi Nasional (BSN)
  16. Casagrande, E., Recanati, F., Rulli, M. C., Bevacqua, D., & Melià, P. (2021). Water balance partitioning for ecosystem service assessment. A case study in the Amazon. Ecological Indicators, 121, 107155. doi: 10.1016/j.ecolind.2020.107155
  17. Chen, H.-P., Lee, M., & Chiueh, P.-T. (2021). Creating ecosystem services assessment models incorporating land use impacts based on soil quality. Science of The Total Environment, 773, 145018. doi: 10.1016/j.scitotenv.2021.145018
  18. Culhane, F. E., Frid, C. L. J., Royo Gelabert, E., White, L., & Robinson, L. A. (2018). Linking marine ecosystems with the services they supply: what are the relevant service providing units? Ecological Applications, 28(7), 1740–1751. doi: 10.1002/eap.1779
  19. Das, M., & Das, A. (2019). Dynamics of urbanization and its impact on urban ecosystem services (UESs): A study of a medium size town of West Bengal, Eastern India. Journal of Urban Management, 8(3), 420–434. doi: 10.1016/j.jum.2019.03.002
  20. DLH. (2018). Daya dukung daya tampung Kabupaten Semarang (Laporan Ak). Dinas Lingkungan Hidup (DLH) Kabupaten Semarang
  21. Enrique, M., & Milagros, P. R. (2017). Practical decision making: An introduction to the analytic hierarchy process (AHP) using super decisions. Springer International Publishing: Springer Briefs in Operations Research
  22. Ernamaiyanti, & Yunanda, M. (2019). Analisis daya dukung dan daya tampung lahan pengembangan perumahan dan permukiman Provinsi Banten. Jurnal Teknik Sipil UNPAL, 9(1), 25–31
  23. Febriarta, E., Haryono, E., & Adji, T. N. (2015). Aplikasi teknologi isotop alam untuk menentukan asal usul air tanah pesisir. Seminar Nasional Pengelolaan Pesisir dan Daerah Aliran Sungai Ke-1, 1, 100–105. doi: 10.17605/osf.io/7a5m6
  24. Febriarta, E., & Larasati, A. (2020). Karakteristik akuifer air tanah dangkal di endapan muda Merapi Yogyakarta. Jurnal Sains Dan Teknologi Lingkungan, 12(2), 84–99. doi: 10.20885/jstl.vol12.iss2.art1
  25. Febriarta, E., & Oktama, R. (2020). Pemetaan daya dukung lingkungan berbasis jasa ekosistem penyedia pangan dan air bersih di Kota Pekalongan. Jurnal Ilmu Lingkungan, 18(2), 283–289. doi: 10.14710/jil.18.2.283-289
  26. Febriarta, E., Oktama, R., & Purnama, S. (2020). Analisis daya dukung lingkungan berbasis jasa ekosistem penyediaan pangan dan air bersih di Kabupaten Semarang. Geomedia: Majalah Ilmiah dan Informasi Kegeografian, 18(1), 12–24. doi: 10.21831/gm.v18i1.30612
  27. Febriarta, E., Prabawa, B. A., & Rosaji, F. S. C. (2018). Sumber daya air di Pulau Pelapis Kepulauan Karimata, Kabupaten Kayong Utara, Kalimantan Barat. Seminar Nasional IV Pengelolaan Pesisir dan Daerah Aliran Sungai, 4, 174–181. doi: 10.17605/osf.io/v6nx8
  28. Febriarta, E., & Purnama, S. (2020). Identifikasi keterdapatan air tanah dengan electromagnetic very low frequency ( EM-VLF ) di non cekungan air tanah Kecamatan Ungaran Timur. Jurnal Geosains Dan Teknologi, 3(2), 52–62. doi: 10.14710/jgt.3.2.2020.52-62
  29. Febriarta, E., Vienastra, S., & Rosaji, F. S. candra. (2018). Identifikasi kapasitas embung Tambakboyo Yogyakarta. Seminar Nasional IV Pengelolaan Pesisir dan Daerah Aliran Sungai, 4, 200–210
  30. Fetter, C. W. (2014). Applied Hydrogeology. England: Pearson New Internasional Edition
  31. Fitoka, E., Tompoulidou, M., Hatziiordanou, L., Apostolakis, A., Höfer, R., Weise, K., & Ververis, C. (2020). Water-related ecosystems’ mapping and assessment based on remote sensing techniques and geospatial analysis: The SWOS national service case of the Greek Ramsar sites and their catchments. Remote Sensing of Environment, 245, 111795. doi: 10.1016/j.rse.2020.111795
  32. Fitria, L. M., Ni’mah, N. M., & Danu, L. K. (2019). Kerentanan fisik terhadap bencana banjir di Kawasan Perkotaan Yogyakarta. Reka Ruang, 2(1), 1–9. doi: 10.33579/rkr.v2i1.1048
  33. Gao, Y., Zhang, S.-X., Geng, R.-T., Ren, G.-P., Cui, L.-W., & Xiao, W. (2020). Control selection for the assessment of protected areas in the Hengduan Mountains: A case study in Yunlong Tianchi National Nature Reserve, China. Global Ecology and Conservation, 23, e01170. doi: 10.1016/j.gecco.2020.e01170
  34. Grizzetti, B., Liquete, C., Pistocchi, A., Vigiak, O., Zulian, G., Bouraoui, F., … Cardoso, A. C. (2019). Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Science of The Total Environment, 671, 452–465. doi: 10.1016/j.scitotenv.2019.03.155
  35. Gunawan, W. A. ., Sisinggih, D., & Dermawan, V. (2013). Studi kerentanan air tanah terhadap kontaminan di cekungan airtanah negara Kabupaten Jembrana. Jurnal Pengairan, 4(2), 1–10
  36. Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors, 17(4), 777. doi: 10.3390/s17040777
  37. Gutierrez, M., Bekessy, S. A., & Gordon, A. (2021). Biodiversity and ecosystem services in strategic environmental assessment: An evaluation of six Australian cases. Environmental Impact Assessment Review, 87, 106552. doi: 10.1016/j.eiar.2021.106552
  38. Hammar, L., Molander, S., Pålsson, J., Schmidtbauer Crona, J., Carneiro, G., Johansson, T., … Andersen, J. H. (2020). Cumulative impact assessment for ecosystem-based marine spatial planning. Science of The Total Environment, 734, 139024. doi: 10.1016/j.scitotenv.2020.139024
  39. Hidayat, F., & Nagara, R. P. (2019). Dataset batas wilayah administrasi untuk penataan ruang wilayah. Seminar Nasional Geomatika, 3, 441. doi: 10.24895/SNG.2018.3-0.984
  40. Hipsey, M. R., Gal, G., Arhonditsis, G. B., Carey, C. C., Elliott, J. A., Frassl, M. A., … Robson, B. J. (2020). A system of metrics for the assessment and improvement of aquatic ecosystem models. Environmental Modelling & Software, 128, 104697. doi: 10.1016/j.envsoft.2020.104697
  41. Hugé, J., Rochette, A. J., de Béthune, S., Parra Paitan, C. C., Vanderhaegen, K., Vandervelden, T., … Janssens de Bisthoven, L. (2020). Ecosystem services assessment tools for African Biosphere Reserves: A review and user-informed classification. Ecosystem Services, 42, 101079. doi: 10.1016/j.ecoser.2020.101079
  42. Inácio, M., Karnauskaitė, D., Baltranaitė, E., Kalinauskas, M., Bogdzevič, K., Gomes, E., & Pereira, P. (2020). Ecosystem services of the Baltic Sea: An assessment and mapping perspective. Geography and Sustainability, 1(4), 256–265. doi: 10.1016/j.geosus.2020.11.001
  43. Kang, P., & Xu, L. (2012). Water environmental carrying capacity assessment of an industrial park. Procedia Environmental Sciences, 13(2011), 879–890. doi: 10.1016/j.proenv.2012.01.082
  44. Kementerian Agraria dan Tata Ruang /Badan Pertahanan Nasonal (ATR/BPN). (2017). Sinkronasi Program pemanfaatan ruang tahunan Provinsi Kepulauan Riau. Jakarta: Subdit Pemanfaatan Kawasan Strategis Nasional Wilayah I Direktorat Pemanfaatan Ruang, Direktorat Jenderal Tata Ruang, Kementerian Agraria dan Tata Ruang/BPN
  45. KESDM. (2012). Geologi. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  46. KESDM. (2015a). Litologi akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  47. KESDM. (2015b). Produktivitas akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  48. KLHK. (2013). Peta ekoregion skala 1:250.000. Jakarta, Indonesia: Kementerian Lingkungan Hidup dan Kehutanan (KLHK) dan Badan Informasi Geospasial (BIG)
  49. KLHK. (2014). Pedoman daya dukung daya tampung lingkungan. Jakarta, Indonesia: Kementerian Lingkungan Hidup Deputi 1 Bidang Tata Lingkungan Asisten Deputi Perencanaan Pemanfaatan SDA & LH & Kajian Kebijakan LH Wilayah & Sektor
  50. KLHK. (2019). Pedoman penentuan pedoman penentuan daya dukung dan daya tampung lingkungan hidup daerah. Jakarta, Indonesia: Direktorat Pencegahan Dampak Lingkungan Kebijakan Wilayah dan Sektor (PDLKWS)
  51. Li, R., Yin, Z., Wang, Y., Li, X., Liu, Q., & Gao, M. (2018). Geological resources and environmental carrying capacity evaluation review, theory, and practice in China. China Geology, 1(4), 556–565. doi: 10.31035/cg2018050
  52. Lilburne, L., Eger, A., Mudge, P., Ausseil, A.-G., Stevenson, B., Herzig, A., & Beare, M. (2020). The land resource circle: Supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma, 363, 114134. doi: 10.1016/j.geoderma.2019.114134
  53. Lin, C., & Kou, G. (2021). A heuristic method to rank the alternatives in the AHP synthesis. Applied Soft Computing, 100, 106916. doi: 10.1016/j.asoc.2020.106916
  54. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277–293. doi: 10.1016/j.isprsjprs.2017.06.001
  55. MEA. (2005). Ecosystems and human well- being: Synthesis. Washington, USA: Island Press
  56. Mirzahossein, H., Safari, F., & Hassannayebi, E. (2021). Estimation of highway capacity under environmental constraints vs. conventional traffic flow criteria: A case study of Tehran. Journal of Traffic and Transportation Engineering (English Edition). doi: 10.1016/j.jtte.2020.04.006
  57. Monk, W. A., Compson, Z. G., Choung, C. B., Korbel, K. L., Rideout, N. K., & Baird, D. J. (2019). Urbanisation of floodplain ecosystems: Weight-of-evidence and network meta-analysis elucidate multiple stressor pathways. Science of The Total Environment, 684, 741–752. doi: 10.1016/j.scitotenv.2019.02.253
  58. Muta’ali, L. (2015). Teknik analisis regional untuk perencanaan wilayah tata ruang dan lingkungan. Yogyakarta: Badan Penerbit Fakultas Geografi
  59. Muta’ali, L. (2019). Daya dukung dan daya tampung lingkungan hidup berbasis jasa ekosistem untuk perencanaan lingkungan hidup. Yogyakarta: Badan Penerbit Fakultas Geografi
  60. P3EJ. (2017). Pedoman penggunaan peta daya dukung dan daya tampung lingkungan hidup (D3TLH). Yogyakarta: Pusat Pengendalian Pembangunan Ekoregion Jawa
  61. P3ES. (2011). Daya dukung dan daya tampung lingkungan hidup ekoregion Sumatera berbasis jasa ekosistem. Pekanbaru: Pusat Pengendalian Pembangunan Ekoregion Sumatera
  62. Pekalongan, D. L. H. (DLH) K. (2018). Kajian daya dukung daya tampung lingkungan Kota Pekalongan Provinsi Jawa Tengah (Laporan Pe). Dinas Lingkungan Hidup (DLH) Kota Pekalongan
  63. Pemerintah Republik Indonesia. (2009). Undang-Undang Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup
  64. Peraturan Presiden. (2020). Peraturan Presiden Republik Indonesia Nomor 43 Tahun 2020 tentang Rencana Tata Ruang Kawasan Perbatasan Negara di Provinsi Riau dan Provinsi Kepulauan Riau. Jakarta, Indonesia: Presiden Republik Indonesia
  65. Pogue, S. J., Kröbel, R., Janzen, H. H., Alemu, A. W., Beauchemin, K. A., Little, S., … McAllister, T. A. (2020). A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie. Ecosystem Services, 45, 101172. doi: 10.1016/j.ecoser.2020.101172
  66. Purnama, S., Tivianton, T. A., Cahyadi, A., & Febriarta, E. (2019). Kajian daerah imbuhan air tanah di Kabupaten Ngawi. Kajian Daerah Imbuhan Airtanah Di Kabupaten Ngawi, 16(1), 54–59. doi: 10.15294/jg.v16i1.18358
  67. Pemerintah Republik Indonesia. (2009). Undang-Undang Republik Indonesia Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup, Lembaran Negara RI Tahun 2009 Nomor 140. Jakarta, Indonesia: Sekretariat Negara Republik Indonesia
  68. Rosellon-Druker, J., Szymkowiak, M., Aydin, K. Y., Cunningham, C. J., Fergusson, E. A., Kasperski, S., … Yasumiishi, E. M. (2020). Participatory place-based integrated ecosystem assessment in Sitka, Alaska: Constructing and operationalizing a socio-ecological conceptual model for sablefish (Anoplopoma fimbria). Deep Sea Research Part II: Topical Studies in Oceanography, 104912. doi: 10.1016/j.dsr2.2020.104912
  69. Saaty, T. L. (1980). The Analytic Hierarchy Process. NewYork: McGraw-Hill Book Company
  70. Saaty, T. L. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35. doi: 10.1007/s11518-006-0151-5
  71. Samodra, H. (1995). Peta Geologi Lembar Tarempa dan Jemaja. Bandung: Pusat Penelitian dan Pengembangan Geologi
  72. Santosa, L. W. (2010). Ekoregion sebagai kerangka dasar dalam perlindungan dan pengelolaan lingkungan (makalah). University Center UGM, Yogyakarta: Seminar Nasional “Semangat Pejuangan dari Jogja: Kembalikan Indonesiaku Hijau
  73. Santoso, D. H., Prasetya, J. D., & Rahman, D. (2020). Analisis daya dukung lingkungan hidup berbasis jasa ekosistem penyediaan air bersih di Pulau Karimunjawa. Jurnal Ilmu Lingkungan, 18(2), 290–296. doi: 10.14710/jil.18.2.290-296
  74. Setyaningrum, A., & Febriarta, E. (2019). Analisis kesesuaian dan daya dukung ekowisata pantai kategori rekreasi Pantai Kuwaru Kabupaten Bantul Yogyakarta. Seminar Nasional Pengelolaan Pesisir Dan Daerah Aliran Sungai Ke-5, 5(March), 36–41. doi: 10.17605/OSF.IO/82PTU
  75. Setyono, D., Hariyani, S., & Haryani, B. (2019). Identifikasi bentuk struktur ruang Kota Batu. Tata Kota dan Daerah, 11(2), 85–92. doi: 10.21776/ub.takoda.2019.011.02.5
  76. Sharma, S., Nahid, S., Sharma, M., Sannigrahi, S., Anees, M. M., Sharma, R., … Joshi, P. K. (2020). A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City and Environment Interactions, 7, 100047. doi: 10.1016/j.cacint.2020.100047
  77. Singhal, B. B. ., & Gupta, R. . (2010). Applied hydogeology of fracture rock. London: Springer Dordrecht Heidelberg London
  78. Small, N., Munday, M., & Durance, I. (2017). The challenge of valuing ecosystem services that have no material benefits. Global Environmental Change, 44, 57–67. doi: 10.1016/j.gloenvcha.2017.03.005
  79. Świąder, M., Lin, D., Szewrański, S., Kazak, J. K., Iha, K., van Hoof, J., … Altiok, S. (2020). The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environmental Science and Policy, 105(October 2019), 56–74. doi: 10.1016/j.envsci.2019.12.010
  80. Teixeira, H., Lillebø, A. I., Culhane, F., Robinson, L., Trauner, D., Borgwardt, F., … Nogueira, A. J. A. (2019). Linking biodiversity to ecosystem services supply: Patterns across aquatic ecosystems. Science of The Total Environment, 657, 517–534. doi: 10.1016/j.scitotenv.2018.11.440
  81. Todd, D. K., & Mays, L. W. (2005). Groundwater Hydrology (3rd ed.). Denver: John Wiley & Sons, Inc
  82. von Thenen, M., Frederiksen, P., Hansen, H. S., & Schiele, K. S. (2020). A structured indicator pool to operationalize expert-based ecosystem service assessments for marine spatial planning. Ocean & Coastal Management, 187, 105071. doi: 10.1016/j.ocecoaman.2019.105071
  83. Wang, G., Xiao, C., Qi, Z., Meng, F., & Liang, X. (2021). Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecological Indicators, 122, 107232. doi: 10.1016/j.ecolind.2020.107232
  84. Wang, Z. gen, Luo, Y. zhou, Zhang, M. hua, & Xia, J. (2014). Quantitative evaluation of sustainable development and eco-environmental carrying capacity in water-deficient regions: A case study in the Haihe River Basin, China. Journal of Integrative Agriculture, 13(1), 195–206. doi: 10.1016/S2095-3119(13)60423-2
  85. Watson, S. C. L., Paterson, D. M., Queirós, A. M., Rees, A. P., Stephens, N., Widdicombe, S., & Beaumont, N. J. (2016). A conceptual framework for assessing the ecosystem service of waste remediation: In the marine environment. Ecosystem Services, 20, 69–81. doi: 10.1016/j.ecoser.2016.06.011
  86. Wicaksono, A. P., Febriarta, E., Nurani, D. T. T., & Larasati, A. (2020). Evaluasi kebutuhan air persemaian di Kawasan Karst Nggorang Manggarai Barat, Labuan Bajo, Nusa Tenggara Timur. Jurnal Ilmu Lingkungan, 18(3), 572–581. doi: 10.14710/jil.18.3.572-581
  87. Zawadzka, J., Gallagher, E., Smith, H., & Corstanje, R. (2019). Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement. Ecological Engineering: X, 2, 100006. doi: 10.1016/j.ecoena.2019.100006
  88. Zhang, B., DeAngelis, D. L., & Ni, W. M. (2021). Carrying capacity of spatially distributed metapopulations. Trends in Ecology and Evolution, 36(2), 164–173. doi: 10.1016/j.tree.2020.10.007
  89. Zhang, J., Qu, M., Wang, C., Zhao, J., & Cao, Y. (2020). Quantifying landscape pattern and ecosystem service value changes: A case study at the county level in the Chinese Loess Plateau. Global Ecology and Conservation, 23, e01110. doi: 10.1016/j.gecco.2020.e01110
  90. Zheng, L. (2020). Research on the impact of mega-projects on carrying capacity of cities taking the first-line project of the West-East gas pipeline as an example. Journal of Management Science and Engineering, 5(3), 195–211. doi: 10.1016/j.jmse.2020.08.001
  91. Zulian, G., Stange, E., Woods, H., Carvalho, L., Dick, J., Andrews, C., … Viinikka, A. (2018). Practical application of spatial ecosystem service models to aid decision support. Ecosystem Services, 29, 465–480. doi: 10.1016/j.ecoser.2017.11.005

Last update:

No citation recorded.

Last update:

No citation recorded.