Model Sistem Dinamik untuk Evaluasi Skenario Pengelolaan Sampah di Kota Depok

*Ika Artika  -  Kementerian Pekerjaan Umum dan Perumahan Rakyat, Indonesia
Mochammad Chaerul orcid scopus  -  Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia
Received: 22 Apr 2020; Published: 31 Dec 2020.
DOI: https://doi.org/10.14710/jwl.8.3.261-279 View
Copyright Transfer Agreement
Subject
Type Copyright Transfer Agreement
  Download (1MB)    Indexing metadata
Open Access Copyright (c) 2020 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

One of the government programs to achieve the target of the National Waste Management Policy and Strategy is to build a regional landfill. To support regional landfill operations, the local governments which have utilized regional landfill need to prepare policies and strategies for optimizing waste management services in their area. Depok City is one of four cities that will served by Nambo Regional Landfill. The purpose of this study was to analyze various alternative policy scenarios to optimize waste management services in Depok City and determine their effects on the amount of waste transported to Nambo Regional Landfill. The policy analysis method used simulation model with a dynamic system approach. The simulation was conducted from 2020 to 2045. There were four scenarios, namely business as usual scenario, scenario A for the optimization of existing waste treatment facilities, scenario B which was based on local waste management policies and strategies, and scenario C for achieving 30% target of waste reduction. The simulation results showed the waste generation in 2045 was estimated to reach 3,426 tons/day. Results from all scenarios showed that the amount of waste disposed to landfill exceeds the maximum waste input to Nambo Regional Landfill. From scenario C, the amount of waste to be processed in the local landfill in 2045 was at least 1,180 tons/day. Depok City has a huge amount of waste and will continue to increase, so it is necessary to add waste treatment facilities and local landfill for the next 26 years. Landfill needs can be reduced by increasing waste treatment, but it requires greater waste management costs.

Note: This article has supplementary file(s).

Keywords: model simulation; urban solid waste; system dynamics; waste management

Article Metrics:

  1. Abraham, R., Fauzi, A., & Nuva, N. (2017). Model simulasi dinamik pengelolaan sampah padat permukiman berbasis program 3R di Kota Bogor. Institut Pertanian Bogor
  2. Al-Khatib, I., Eleyan, D., & Garfield, J. (2015). A system dynamics model to predict municipal waste generation and management costs in developing areas. Journal of Solid Waste Technology and Management, 41(2), 109–120. doi: 10.5276/JSWTM.2015.109
  3. Archer, E., Baddeley, A., Klein, A., Schwager, J., & Whiting, K. (2005). Mechanical-biological-treatment: A guide for decision makers processes, policies, and markets. Retrieved from https://www.cti2000.it/Bionett/BioG-2005-003%20MBT_Summary_Report_Final.pdf
  4. Bala, B. K., Arshad, F. M., & Noh, K. M. (2017). Modelling of solid waste management systems of Dhaka City in Bangladesh. In B. K. Bala, F. M. Arshad, & K. M. Noh (Eds.), System dynamics (pp. 249–274). Singapore: Springer. doi: 10.1007/978-981-10-2045-2_12
  5. Bappeda Kota Depok. (2017). Rencana induk sistem pengelolaan sampah Kota Depok tahun 2017-2036. Depok: Bappeda Kota Depok
  6. Barlas, Y. (1989). Multiple tests for validation of system dynamics type of simulation models. European Journal of Operational Research, 42(1), 59–87. doi: 10.1016/0377-2217(89)90059-3
  7. BPS Kota Depok. (2019). Kota Depok dalam angka tahun 2019. Depok: Badan Pusat Statistik Kota Depok
  8. Cai, L., & Liu, Y. (2013). Application of system dynamics for municipal waste management in China: A case study of Beijing. In Proceedings of the 31st International Conference of the System Dynamics Society, (pp. 513–543). Cambridge, Massachusetts, USA: System Dynamics Society. Retrieved from https://proceedings.systemdynamics.org/2013/proceed/papers/P1106.pdf
  9. Campuzano, F., & Mula Bru, J. (2011). Supply chain simulation. London: Springer-Verlag. doi: 10.1007/978-0-85729-719-8
  10. Chaerul, M., Tanaka, M., & Shekdar, A. V. (2008). A system dynamics approach for hospital waste management. Waste Management, 28(2), 442–449. doi: 10.1016/j.wasman.2007.01.007
  11. Damanhuri, E., & Padmi, T. (2019). Pengelolaan sampah terpadu. Bandung: ITB Press
  12. Deaton, M., & Winebrake, J. J. (2000). Dynamic modeling of environmental systems. New York: Springer-Verlag. doi: 10.1007/978-1-4612-1300-0
  13. DLH Kota Depok. (2019). Data pengelolaan sampah Kota Depok. Depok: DLH Kota Depok
  14. Dyson, B., & Chang, N.-B. (2005). Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Management, 25(7), 669–679. doi: 10.1016/j.wasman.2004.10.005
  15. Fauzan, A. Y. (2017). Strategi pengelolaan sampah untuk mengurangi timbulan sampah plastik (sistem pengelolaan sampah dengan simulasi model sistem dinamik di Pulau Pramuka Kabupaten Adminisrasi Kepulauan Seribu). Universitas Indonesia
  16. Febriyanto, R. (2016). Strategi pengelolaan sampah kota melalui penerapan alternatif kebijakan lingkungan (Suatu kajian sistem pengelolaan sampah di kota Serang melalui simulasi model System Dynamics). Universitas Indonesia
  17. Giannis, A., Chen, M., Yin, K., Tong, H., & Veksha, A. (2017). Application of system dynamics modeling for evaluation of different recycling scenarios in Singapore. Journal of Material Cycles and Waste Management, 19, 1177–1185. doi: 10.1007/s10163-016-0503-2
  18. Handono, M. (2010). Model pengelolaan tempat pemrosesan akhir (TPA) sampah secara berkelanjutan di TPA Cipayung Kota Depok-Jawa Barat. Institut Pertanian Bogor
  19. Intani, E. (2017). Pengaruh reduksi sampah rumah tangga di Kota Bandung terkait konsep regional menggunakan pemodelan sistem dinamik. Institut Teknologi Bandung
  20. Kementerian Lingkungan Hidup dan Kehutanan. (2018). Data pengelolaan sampah. Retrieved from http://sipsn.menlhk.go.id/
  21. Kholil, K. (2005). Rekayasa model sistem dinamik pengelolaan sampah terpadu berbasis nirlimbah (zero waste) studi kasus di Jakarta Selatan. Institut Pertanian Bogor
  22. Kollikkathara, N., Feng, H., & Yu, D. (2010). A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues. Waste Management, 30(11), 2194–2203. doi: 10.1016/j.wasman.2010.05.012
  23. Manasakunkit, C., & Chinda, T. (2017). Development of a municipal solid waste dynamic model in Bangkok, Thailand. Journal of Science Technology, 39(5), 685–695. doi: 10.14456/sjst-psu.2017.84
  24. Ochiai, S., Ishigaki, T., Wangyao, K., & Yamada, M. (2015). Measurement of the potential heat and ash content of the residue from mechanical biological treatment in Thailand. In The 26th Annual Conference of Japan Society of Material Cycles and Waste Management. doi: 10.14912/jsmcwm.26.0_555
  25. Pemerintah Kota Depok. (2018). Peraturan Wali Kota Depok No. 65 tahun 2018 tentang kebijakan dan strategi Kota Depok dalam pengelolaan sampah rumah tangga dan sampah sejenis sampah rumah tangga
  26. Pemerintah Republik Indonesia. (2017). Peraturan Presiden No. 97 Tahun 2017 tentang kebijakan dan strategi nasional pengelolaan sampah rumah tangga dan sampah sejenis sampah rumah tangga
  27. Popli, K., Sudibya, G. L., & Kim, S. (2017). A review of solid waste management using system dynamics modeling. Journal of Environmental Science International, 26(10), 1185–1200. doi: 10.5322/JESI.2017.26.10.1185
  28. Rahayu, N., Arai, T., Yudoko, G., & Morimoto, H. (2013). System dynamics models for planning long-term integrated municipal solid waste management in Bandung city. In The Sustainable City VIII (pp. 1153–1168). WIT Transactions on Ecology and the Environment. doi: 10.2495/SC130982
  29. Sterman, J. (2002). System dynamics: Systems thinking and modeling for a complex world (ESD-WP-2003-01.13-ESD Internal Symposium). Cambridge, MA: MIT. Retrieved from https://dspace.mit.edu/handle/1721.1/102741
  30. UPTD PSTR Jawa Barat. (2018). Rencana pembangunan dan pengelolaan TPPAS regional Nambo. UPTD Pengelola Sampah TPA/TPST Regional Provinsi Jawa Barat
  31. Wildanurrizal, W., Bahauddin, A., & Ferdinant, P. F. (2014). Perancangan model simulasi pengelolaan sampah dengan pendekatan sistem dinamis di Kota Cilegon. Jurnal Teknik Industri, 2(3). Retrieved from https://jurnal.untirta.ac.id/index.php/jti/article/view/2313
  32. Yudiyanto, Y. (2007). Analisis sistem pengelolaan sampah permukiman di Kota Bogor. Institut Pertanian Bogor
  33. Zulfinar, Z., & Sembiring, E. (2015). Dinamika jumlah sampah yang dihasilkan di Kota Bandung. Jurnal Teknik Lingkungan, 21(1), 18–28. doi: 10.5614%2Fjtl.2015.21.1.3

Last update: 2021-04-20 13:02:19

No citation recorded.

Last update: 2021-04-20 13:02:25

No citation recorded.