skip to main content

KONTAMINASI ARSEN DAN TEMBAGA PADA AIR TANAH DI WILAYAH PENAMBANGAN RAKYAT KALURAHAN KALIREJO, KOKAP, KULON PROGO, DAERAH ISTIMEWA YOGYAKARTA

Doni Prakasa Eka Putra orcid scopus  -  Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
Riana Listiyastuti  -  Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
I Wayan Warmada orcid scopus  -  Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
Lestari Sutra Simamora  -  Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
*Muhamad Ilham orcid scopus  -  Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
Open Access Copyright (c) 2025 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract

Penelitian ini bertujuan untuk menelaah hubungan antara aktivitas pertambangan dengan kandungan logam berat pada air tanah dengan studi kasus di kawasan pertambangan rakyat Kalurahan Kalirejo, Kokap, Kulon Progo, Daerah Istimewa Yogyakarta. Beberapa logam berat yang umum berasosiasi dengan wilayah pertambangan dengan tipe alterasi hidrotermal adalah arsen (As) dan tembaga (Cu). Kalurahan Kalirejo memiliki kondisi geologi yang ditandai oleh kehadiran batuan intrusi, disertai mineralisasi serta alterasi hidrotermal yang cukup intensif. Selain itu, praktik pertambangan tradisional yang relatif masif di kawasan ini semakin meningkatkan potensi kontaminasi air tanah. Mengingat tingginya ketergantungan masyarakat terhadap sumber air tanah, penting dilakukan kajian mengenai kandungan Cu dan As serta keterkaitannya dengan kondisi geologi setempat. Penelitian dilakukan melalui analisis kandungan Cu dan As pada sampel air tanah, batuan, dan urat kuarsa. Hasil menunjukkan bahwa konsentrasi Cu pada air tanah masih tergolong aman (<2 mg/L) sesuai Permenkes No. 2 Tahun 2023, dengan rentang 0,0027–0,94 mg/L. Sebaliknya, konsentrasi As telah melampaui ambang batas aman (>0,01 mg/L), yaitu 0,0623–0,1287 mg/L. Kondisi pH netral pada air tanah Kalirejo diduga menjadi faktor pengontrol utama kelarutan logam, sehingga As (V) cenderung lebih mudah larut dibandingkan Cu. Konsentrasi As yang lebih tinggi juga ditemukan pada area dengan alterasi argilik dan pelapukan batuan intensif. Oleh karena itu, tindakan remediasi air tanah direkomendasikan, terutama pada wilayah permukiman dengan kadar As tinggi.

Note: This article has supplementary file(s).

Fulltext View|Download |  Copyright Transfer Agreement
Transfer Copyright Agreement
Subject
Type Copyright Transfer Agreement
  Download (335KB)    Indexing metadata
Keywords: Air Tanah Dangkal; Arsen; Hidrokimia; Tambang Tradisional; Tembaga

Article Metrics:

  1. Adeloju, S. B., Khan, S., & Patti, A. F. (2021). Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities—a review. Applied Sciences, 11(4), 1926. https://doi.org/10.3390/app11041926
  2. Badan Informasi Geospasial Indonesia (BIG). (2019). Peta Rupa Bumi Indonesia dan DEMNAS (Digital Elevation Model). Diakses pada 1 Oktober 2024. Dapat diakses melalui: https://tanahair.indonesia.go.id/portal-web/
  3. Canteiro, M., Arellano-Aguilar, O., Bravo, J. E. B., & Zambrano, L. (2023). Urban green spaces and their relationship with groundwater quality: the case of a shallow aquifer in the south of Mexico City. Sustainable water resources management, 9(5), 156. https://doi.org/10.1007/s40899-023-00935-x
  4. Clark, I. (2015). Geochemical Evolution: Florida, CRC Press, 231–264 p., doi: 10.1201/b18347-9
  5. Devy, R.A., dan Lakshmi, G. (2020). Study of heavy metal contamination of water bodies collected from flood affected area - Mammukku, Ranni, Pathanamthitta District, Kerala, India, AIP Conference Proceedings, Online, American Institute of Physics Inc., v. 2287, p. 020027(1–6), doi: 10.1063/5.0029897
  6. Faria, M. C. D. S., Hott, R. D. C., Santos, M. J. D., Santos, M. S., Andrade, T. G., Bomfeti, C. A., ... & Rodrigues, J. L. (2023). Arsenic in mining areas: Environmental contamination routes. International Journal of Environmental Research and Public Health, 20(5), 4291. https://doi.org/10.3390/ijerph20054291
  7. Goswami, R., Neog, N., dan Thakur, R. (2022). Hydrogeochemical analysis of groundwater quality for drinking and irrigation with elevated arsenic and potential impact on agro-ecosystem in the upper Brahmaputra plain, India: Environmental Science and Pollution Research, v. 29, p. 68735–68756, doi: 10.1007/s11356-022-20600-8
  8. Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Current Pollution Reports, 2(1), 68-89. https://doi.org/10.1007/s40726-016-0028-2
  9. Kanel, S. R., Das, T. K., Varma, R. S., Kurwadkar, S., Chakraborty, S., Joshi, T. P., ... & Nadagouda, M. N. (2023). Arsenic contamination in groundwater: Geochemical basis of treatment technologies. ACS Environmental Au, 3(3), 135-152. https://doi.org/10.1021/acsenvironau.2c00053
  10. Kato, T., Masaki, Y., Gathuka, L.W., Takai, A. and Katsumi, T. (2021). Anaerobic batch leaching tests of shale rock grains. Japanese Geotechnical Society Special Publication, 9(7), pp.374-379. https://doi.org/10.3208/jgssp.v09.cpeg153
  11. Kato, T., Takai, A., Iwata, Y., Gathuka, L.W. and Katsumi, T. (2023). Evaluating temperature effects on leaching behavior of geogenic arsenic and boron from crushed excavated rocks using shaking and nonshaking batch tests. Soils and Foundations, 63(1), p.101274. https://doi.org/10.1016/j.sandf.2023.101274
  12. Kementerian Kesehatan Republik Indonesia, (2023), Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 Tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 Tentang Kesehatan Lingkungan: Indonesia, p. 175, https://peraturan.bpk.go.id/Download/301587/Permenkes Nomor 2 Tahun 2023.pdf
  13. Li, Y., Ji, L., Mi, W., Xie, S., dan Bi, Y. (2021). Health risks from groundwater arsenic on residents in northern China coal-rich region. Science of the Total Environment, 773, 145003. https://doi.org/10.1016/j.scitotenv.2021.145003
  14. Listiyastuti, R., Simamora, L. S., Ilham, M., Warmada, I. W., & Putra, D. P. E. (2025). Hidrogeologi Dan Hidrokimia Air Tanah Pada Area Penambangan Emas Tradisional Di Wilayah Kalirejo, Kokap, Kulon Progo, Daerah Istimewa Yogyakarta. Jurnal Geosaintek, 11(1), 1–15. https://doi.org/10.12962/j25023659.v11i1.2352
  15. Mukherjee, A., Coomar, P., Sarkar, S., Johannesson, K. H., Fryar, A. E., Schreiber, M. E., ... & Vengosh, A. (2024). Arsenic and other geogenic contaminants in global groundwater. Nature Reviews Earth & Environment, 5(4), 312-328. https://doi.org/10.1038/s43017-024-00519-z
  16. Nisaa, F.A. (2017) Konsentrasi dan sumber arsenik pada air tanah di daerah Jendi, Kecamatan Selogiri, Kabupaten Wonogiri, Jawa Tengah [Skripsi, Tidak dipublikasikan]: Universitas Gadjah Mada, 171 p
  17. Nivetha, A., Sakthivel, C., Prabha, I. (2021). Heavy Metal Contamination in Groundwater and Impact on Plant and Human. In: Shit, P.K., Adhikary, P.P., Sengupta, D. (eds) Spatial Modeling and Assessment of Environmental Contaminants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-63422-3_14
  18. Podgorski, J., & Berg, M. (2020). Global threat of arsenic in groundwater. Science, 368(6493), 845-850. DOI: 10.1126/science.aba151
  19. Pramumijoyo, P. (2017). Geologi, geokimia, dan karakteristik fluida hidrotermal pada endapan epitermal sulfidasi rendah di daerah Sangon, Kokap, Daerah Istimewa Yogyakarta [Tesis, Tidak dipublikasikan]: Universitas Gadjah Mada, 329 p
  20. Pramumijoyo, P., Idrus, A., Warmada, I.W., dan Yonezu, K. (2017). Geology, geochemistry and hydrothermal fluid characteristics of low sulfidation epithermal deposit in the Sangon area, Kokap, Special Region of Yogyakarta: Journal of Applied Geology, v. 2, p. 48, doi: 10.22146/jag.42442
  21. Punia, A., & Siva Siddaiah, N. (2017). Assessment of heavy metal contamination in groundwater of Khetri copper mine region, India and health risk assessment. Asian Journal of Water, Environment and Pollution, 14(4), 9-19. https://doi.org/10.3233/AJW-170032
  22. Radutu, A., Luca, O., & Gogu, C. R. (2022). Groundwater and urban planning perspective. Water, 14(10), 1627. https://doi.org/10.3390/w14101627
  23. Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation-A critical review. Chemosphere, 158, 37-49. http://dx.doi.org/10.1016/j.chemosphere.2016.05.043
  24. Setiabudi, B.T. (2005). Penyebaran Merkuri Akibat Usaha Pertambangan Emas di Daerah Sangon,Kabupaten Kulon Progo, D.I. Yogyakarta, Subdit Konservasi, Kolokium Hasil Lapangan-DIM, Pusat Sumber DayaGeologi, Bandung, hal 61-6
  25. Simamora, L.S. (2021). Geokimia air tanah dan air sungai pada daerah pertambangan dan pengolahan emas tradisional di Dusun Plampang dan sekitarnya, Kalurahan Kalirejo, Kapanewon Kokap, Kabupaten Kulon Progo, DIY [Skripsi, Tidak dipublikasikan]: Universitas Gadjah Mada, 196 p
  26. Tabelin, C.B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E.M., Ito, M. & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, pp.1522-1553. https://doi.org/10.1016/j.scitotenv.2018.07.103
  27. Tiwari, A. K., Singh, P. K., Singh, A. K., & De Maio, M. (2016). Estimation of heavy metal contamination in groundwater and development of a heavy metal pollution index by using GIS technique. Bulletin of environmental contamination and toxicology, 96, 508-515. https://doi.org/10.1007/s00128-016-1750-6
  28. Ullah, Z., Rashid, A., Ghani, J., Nawab, J., Zeng, X. C., Shah, M., ... & Iqbal, J. (2022). Groundwater contamination through potentially harmful metals and its implications in groundwater management. Frontiers in Environmental Science, 10, 1021596. https://doi.org/10.3389/fenvs.2022.1021596
  29. Widagdo, A., Pramumijoyo, S., dan Harijoko, A. (2018). Tectonostratigraphy-volcanic of Gajah-Ijo-Menoreh Tertiary volcanic formations in Kulon Progo mountain area, Yogyakarta-Indonesia, in IOP Conference Series: Earth and Environmental Science, v. 212, p. 1–12, doi: 10.1088/1755-1315/212/1/012052

Last update:

No citation recorded.

Last update:

No citation recorded.