TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT SLOT ONLINE TOTO SLOT toto togel TOTO SLOT SLOT ONLINE SLOT ONLINE SLOT ONLINE SLOT ONLINE TOTO SLOT TOTO SLOT TOTO SLOT slot online TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO MACAU TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL BYDPLAY TOTO SLOT TOTO TOGEL TOTO TOGEL TOTO TOGEL TOTO SLOT SLOT GACOR TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT toto macau toto togel SLOT GACOR TOTO TOGEL TOTO TOGEL SLOT GACOR TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT PASCOL4D TOTO SLOT KARI4D TOTO SLOT TOTO SLOT TOTO TOGEL PASCOL4D TOTO SLOT TOTO SLOT TOTO TOGEL SLOT GACOR TOTO SLOT TOTO SLOT TOTO TOGEL TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT TOTO SLOT
SGO777 borneo303 10naga rtp slot gacor situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau ayamtoto ayamtoto ayamtoto ayamtoto ayamtoto ayamtoto kuatoto kuatoto
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
skip to main content

Inventory of Greenhouse Gas Emissions in the Energy Sector in Gili Iyang Island, Sumenep Regency Using the IPCC 2006 Method

Wahid Dianbudiyanto  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
*Nurina Fitriani orcid scopus  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Rezhyta Nahatya Shalva  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Fatmawati Fatmawati  -  Study Program of Mathematics, Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Dwi Ratri Mitha Isnadina  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
M Bagas Pramudya Pratama  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Danar Arifka Rahman  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Rinaldy Jose Nathanael  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Dio Alif Hutama  -  Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, Jawa Timur 60115 | Universitas Airlangga |, Indonesia
Open Access Copyright (c) 2025 Wahid Dianbudiyanto, Nurina Fitriani, Rezhyta Nahatya Shalva, Fatmawati , Dwi Ratri Mitha Isnadina, M Bagas Pramudya Pratama, Danar Arifka Rahman, Rinaldy Jose Nathanael, Dio Alif Hutama
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Global warming comes from many human activities, such as the burning of fossil fuels and the use of energy can produce Greenhouse Gases. The energy sector itself is the largest contributor of greenhouse gases in the world. This study aims to determine the greenhouse gas emissions produced in the energy sector on Gili Iyang Island. To be able to determine the greenhouse gas emissions produced in the energy sector on Gili Iyang Island, the IPCC 2006 calculation method was used. In this method, primary data is needed in the form of data on energy and fuel consumption activities of residents and secondary data in the form of the number of families on Gili Iyang Island. In the stationary source itself, CO2 gas emissions are produced at 1,438,259.9 Kg/Year, CH4 gas at 324.164 Kg/Year, and N2O gas at 12.486 Kg/Year. Meanwhile, moving sources produce CO2 gas emissions of 510,339.1052 Kg/Year, CH4 gas of 191.363 Kg/Year, and N2O gas of 20.969 Kg/Year. As for mitigation actions that can be taken based on its topography and climate, Gili Iyang Island has the potential to use solar panels and biogas as alternative energy and fuel sources to meet daily needs.
Fulltext View|Download
Funding: LPPM Universitas Airlangga under contract 963/UN3/2023

Article Metrics:

  1. Gahlawat IN and Lakra P. Global Climate change and its effects. Integrated Journal of Social Sciences. 2020;7(1):14-23
  2. Akinyoola JA, Oluleye A, and Gbode IE. A Review of Atmospheric Aerosol Impacts on Regional Extreme Weather and Climate Events. Aerosol Science and Engineering. 2024 July;8:249-274
  3. Alli AK and Kotha MM. Significance of fuel additives on the performance and emission characteristics of diesel engine with biodiesel fuel: a review. International Journal of Ambient Energy. 2023 April;44(1):1990-2004
  4. Shakoor A, Ashraf F, Shakoor S, Mustafa A, Rehman A, and Altaf M M. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research. 2020 Nov;27(31):38513-38536
  5. Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JG, Wiedenhofer D, Mattioli G, Khourdajie AA, and House J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental research letters. 2021 June;16(7):1-31
  6. Ramzan S, Rasool T, Bhat RA, Ahmad P, Ashraf I, Rashid N, ul Shafiq M, and Mir IA. Agricultural soils a trigger to nitrous oxide: A persuasive greenhouse gas and its management. Environmental Monitoring and Assessment. 2020 June;192(7):436
  7. Alajmi RG. Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI. Energy Policy. 2021;156:112454
  8. Neubauer SC. Global warming potential is not an ecosystem property. Ecosystems. 2021 Aril;24(8):2079-2089
  9. Kweku DW, Bismark O, Maxwell A, Desmond KA, Danso KB, Oti-Mensah EA, Quachie AT, and Adormaa BB. Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific research and reports. 2017;17(6), 1-9
  10. Mikhaylov A, Moiseev N, Aleshin K, and Burkhardt T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues. 2020;7(4):2897-2913
  11. Ammar H, Abidi S, Ayed M, Moujahed N, Marti ME deH, Chahine M, Bouraoui R, Lopez S, M’hamed HC, and Hechlef H. Estimation of Tunisian greenhouse gas emissions from different livestock species. Agriculture. 2020 Nov;10(11):1-17
  12. Amon B, Çinar G, Anderl M, Dragoni F, Kleinberger-Pierer M, and Hörtenhuber S. Inventory reporting of livestock emissions: The impact of the IPCC 1996 and 2006 Guidelines. Environmental Research Letters. 2021 June;16(7):1-15
  13. Ramírez-Melgarejo M, Reyes-Figueroa AD, Gassó-Domingo S, and Güereca LP. Analysis of empirical methods for the quantification of N2O emissions in wastewater treatment plants: Comparison of emission results obtained from the IPCC Tier 1 methodology and the methodologies that integrate operational data. Science of the Total Environment. 2020 Dec;747:1-12
  14. Tian H, Chen G, Lu C, Xu X, Ren W, Zhang B, Banger K, Tao B, Pan S, Liu M, Zhang C, Bruhwiler L, and Wofsy S. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability. 2015 March;1(1):1-20
  15. McDowell G, Koppes M, Harris L, Chan KM, Price MF, Lama DG, and Jiménez G. Lived experiences of ‘peak water’in the high mountains of Nepal and Peru. Climate and Development. 2022;14(3):268-281
  16. Ward PJ, de Ruiter MC, Mård J, Schröter K, Van Loon A, Veldkamp T, von Uexkull N, Wanders N, AghaKouchak A, Arnbjerg-Nielsen K, Capewell L, Llasat MC, Day R, Dewals B, di Baldassarre G, Hunig LS, Kreibich H, Mazzoleni M, Savelli E, Teutschbein C, and Wens M. The need to integrate flood and drought disaster risk reduction strategies. Water Security. 2020 Dec;11:1-14
  17. Sara G, Milanese M, Prusina I, Sara A, Angel DL, Glamuzina B, Nitzan T, Freeman S, Rinaldi A, Palmeri V, Montalto V, lo Martire M, Gianguzza P, Arizza V, lo Brutto S, de Pirro M, Helmuth B, Murray J, de Cantis S, Williams GA. The impact of climate change on Mediterranean intertidal communities: losses in coastal ecosystem integrity and services. Regional environmental change. 2014;14:5-17
  18. Tarolli P, Luo J, Straffelini E, Liou Y-A, Nguyen K-A., Laurenti R, Masin R, and D’Agostino V. Saltwater intrusion and climate change impact on coastal agriculture. Plos Water. 2023 April;2(4):1-5
  19. Hoffmann AA, Rymer PD, Byrne M, Ruthrof KX, Whinam J, McGeoch M, Bergstorm DM, Guerin GR, Sparrow B, Joseph L, Hill SJ, Andrew NR, Camac J, Bell N, Riegler M, Gardner JL, and Williams SE. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology. 2019;44(1):3-27
  20. Koh HL, Teh SY, Kh’Ng XY, and Raja Barizan RS. Mangrove forests: Protection against and resilience to coastal disturbances. Journal of Tropical Forest Science. 2018 Nov;30(5):446-460
  21. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Wilis BL, and Wilson SK. Global warming and recurrent mass bleaching of corals. Nature. 2017 March;543:373-377
  22. Hernández-Delgado EA. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Marine Pollution Bulletin. 2015;101(1):5-28
  23. Liu S, Xing J, Wang S, Ding D, Chen L, and Hao J. Revealing the impacts of transboundary pollution on PM2. 5-related deaths in China. Environment International. 2020 Jan;134:1-10
  24. Adebayo Oluwakemi O and Omodele I. The current status of cereal (maize, rice and sorghum) crops cultivation in Africa: Need for integration of advances in transgenic for sustainable crop production. International Journal of Agricultural Policy and Research. 2015 March;3(3):133-145
  25. Scott D, Hall CM, and Gössling S. Global tourism vulnerability to climate change. Annals of Tourism Research. 2019;77:49-61
  26. Elisha OD and Felix MJ. Destruction of coastal ecosystems and the vicious cycle of poverty in Niger Delta Region. Journal of Global Agriculture and Ecology. 2021;11(2):7-24
  27. Salgueiro-Otero D, Barnes ML, and Ojea E. Climate adaptation pathways and the role of social-ecological networks in small-scale fisheries. Scientific Reports. 2022;12:1-13
  28. Sujarwo W. Sasak Traditional Villages: A tourism potential and conservation effort for culture and plants. Jurnal Masyarakat dan Budaya. 2019;21(2):203-220
  29. Mateus C, Flor D, Guerrero CA, Córdova X, Benitez FL, Parra R, and Ochoa-Herrera V. Anthropogenic emission inventory and spatial analysis of greenhouse gases and primary pollutants for the Galapagos Islands. Environmental Science and Pollution Research. 2023 May;30(26):68900-68918
  30. Uddin W. Mobile and area sources of greenhouse gases and abatement strategies. In Handbook of climate change mitigation and adaptation. Cham: Springer International Publishing. 2022 June:743-807
  31. Leal-Arcas R, Faktaufon M, Ribeaud R, Brown R, and Prakash K. International Trade, Energy Transition and Climate Change Obligations: The Perspective of Small Pacific Islands and the Caribbean Community. Trade, Law and Development. 2021;13(2):198-263
  32. Soomauroo Z, Blechinger P, and Creutzig F. Unique opportunities of island states to transition to a low-carbon mobility system. Sustainability. 2020 Feb;12(4):1-18
  33. Nuttall P, Newell A, Rojon I, Milligan B, and Irvin A. Pacific island domestic shipping emissions abatement measures and technology transition pathways for selected ship types. Marine Policy. 2021 Oct;132:1-17
  34. Voumik LC, Rahman MH, Nafi SM, Hossain MA, Ridzuan AR, and Yusoff NYM. Modelling sustainable non-renewable and renewable energy based on the EKC hypothesis for Africa’s ten most popular tourist destinations. Sustainability. 2023 Feb;15(5):1-19
  35. Doorga JR, Deenapanray PN, and Rughooputh SD. Geographic carbon accounting: The roadmap for achieving net-zero emissions in Mauritius Island. Journal of Environmental Management. 2023 May;333:117434
  36. Brown L, McFarlane A, Das A, and Campbell K. The impact of financial development on carbon dioxide emissions in Jamaica. Environmental Science and Pollution Research. 2022;29:25902-25915
  37. Pan SY, Gao M, Kim H, Shah KJ, Pei SL, and Chiang PC. Advances and challenges in sustainable tourism toward a green economy. Science of the total environment. 2018 Sep;635:452-469
  38. Shumais M. Technological Innovation System for Energy Transition in Small Island Developing States: Adaptive Capacity, Market Formation and Policy Direction in the Maldives. Asian Journal of Innovation and Policy. 2022 Dec;11(3):293-319
  39. Iqbal N, Ejaz SM, and Altmash M. Climate change as a key contributor to migrant crisis: a case study of developmental & environmental challenges to Kiribati people. OIDA International Journal of Sustainable Development. 2020;13(9):43-54
  40. Odabashian V, HassabElnaby HR, and Manoukian A. Innovative renewable energy technology projects’ success through partnership. International Journal of Energy Sector Management. 2019;13(2):341-358
  41. Thomas A, Baptiste A, Martyr-Koller R, Pringle P, and Rhiney K. Climate change and small island developing states. Annual Review of Environment and Resources. 2020 Oct;45:1-27
  42. Shivanna KR. Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy. 2022 May;88:160-171
  43. Glivin G, Kalaiselvan N, Mariappan V, Premalatha M, Murugan PC, and Sekhar J. Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel. 2021 Oct;302:1-16
  44. Ahmad L, Khordehgah N, Malinauskaite J, and Jouhara H. Recent advances and applications of solar photovoltaics and thermal technologies. Energy. 2020 Sep;207:1-11
  45. Dalapati GK, Ghosh S, Sherin T, Ramasubramanian B, Samanta A, Rathour A, Wong TKS, Chakrabortty S, Ramakrishna S, and Kumar A. Maximizing solar energy production in ASEAN region: opportunity and challenges. Results in Engineering. 2023 Dec;20:1-18
  46. Kalair A, Abas N, Saleem MS, Kalair AR, and Khan N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage. 2020 Jan;3(1):1-27
  47. Odejobi OJ, Ajala OO, and Osuolale FN. Review on potential of using agricultural, municipal solid and industrial wastes as substrates for biogas production in Nigeria. Biomass Conversion and Biorefinery. 2024;14:1567-1579
  48. Masala F, Groppi D, Nastasi B, Piras G, and Garcia DA. Techno-economic analysis of biogas production and use scenarios in a small island energy system. Energy. 2022 Nov;258:124831
  49. Czekała W. Biogas as a sustainable and renewable energy source. Clean Fuels for Mobility. 2022:201-214
  50. Pye A, Ronzi S, Mbatchou Ngahane B H, Puzzolo E, Ashu AH, and Pope D. Drivers of the adoption and exclusive use of clean fuel for cooking in sub-Saharan Africa: Learnings and policy considerations from Cameroon. International Journal of Environmental Research and Public Health. 2020 Aug;17(16):1-24
  51. Maji P and Kandlikar M. Quantifying the air quality, climate and equity implications of India's household energy transition. Energy for Sustainable Development. 2020 April;55:37-47
  52. Ishengoma EK and Igangula NH. Determinants of household choice of cooking energy-mix in a peri-urban setting in Tanzania. Energy for Sustainable Development. 2021 Dec;65:25-35
  53. Dewoolkar P, Belhekar V, Bhatkhande A, Hatekar N, and Chavan R. Improving adoption of liquefied petroleum gas (LPG) for better health and conservation outcomes. Biodiversity. 2020 Sep;21(2):1-7
  54. Stamopoulos D, Dimas P, Sebos I, and Tsakanikas A. Does investing in renewable energy sources contribute to growth? A preliminary study on Greece’s National Energy and Climate Plan. Energies. 2021 Dec;14(24):1-18
  55. Hoang AT and Nguyen XP. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production. 2021 July;305:1-33

Last update:

No citation recorded.

Last update:

No citation recorded.