skip to main content

Identification Of Infant Mortality Rate Factors Using Spatial Autoregressive Moving Average

1Demographic and Civil Registration Study Program, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia

2Faculty of Medicine, Universitas Pendidikan Ganesha,Kota Singaraja, Bali, Indonesia

Received: 29 Oct 2024; Published: 30 Dec 2024.
Open Access Copyright (c) 2024 The authors. Published by Faculty of Public Health, Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Introduction: Infant mortality rate (IMR) is one of the indicator of the success for maternal and child health programs. Infant mortality rates affected by biological, environmental, socioeconomic factors and quality of healthcare services. This study aimed to analyze the factors affecting infant mortality rates in the East Java Province using a spatial regression model.

Methods: The research units were all 38 districts and cities in East Java Province. Secondary data from the 2023’ Health Profile of East Java Province was used in this study, which included the number of infant deaths and the biological, environmental, socioeconomic factors, the availability and quality of health services. In this study, spatial modelling was conducted using an area approach and spatial influence using the Spatial Autoregressive Moving Average (SARMA) method with Queen Contiguity spatial weights.

Results: Based on R2 and AIC values, the Spatial Autoregressive model was preferable to Ordinary Least Squares. The obtained model showed that low birth weight and the percentage of the population that can access good sanitation were the significant factors influencing infant mortality in this study. The other factors: percentage of deliveries by health workers, obstetric complications handled, percentage of poor people, infants receiving vitamin A, and infants receiving exclusive breastfeeding had no significant effect on Infant Mortality Rates.

Conclusion: Factors that had significant effect on infant mortality rates in this study were low birth weight and percentage of residents who had access to proper sanitation.

Fulltext View|Download
Keywords: infant mortality rate, ordinary least squares, spatial autoregressive moving average, sanitation, low birth weight.

Article Metrics:

  1. Dagher RK, Linares DE. A Critical Review on the Complex Interplay between Social Determinants of Health and Maternal and Infant Mortality. Children. 2022;9(3)
  2. Aminullah AAH, Purhadi P. Pemodelan untuk Jumlah Kasus Kematian Bayi dan Ibu di Jawa Timur Menggunakan Bivariate Generalized Poisson Regression. J Sains dan Seni ITS. 2020;8(2)
  3. Putu Suciptawati NL, Asih M, Sari K, Srinadi IGAM. Factors Affecting Infant Mortality Rate in Karangasem, Bali. Indones J Phys Nucl Appl. 2019;4(1):12–5
  4. BPS Provinsi Jawa Timur. Hasil Long Form Sensus Penduduk 2020 Provinsi Jawa Timur. 2023
  5. Permata Sari I, Afny Sucirahayu C, Ainun Hafilda S, Nabila Sari S, Safithri V, Febriana J, et al. Faktor Penyebab Angka Kematian Ibu Dan Angka Kematian Bayi Serta Strategi Penurunan Kasus (Studi Kasus Di Negara Berkembang) : Sistematic Review. PREPOTIF J Kesehat Masy. 2023;7(3):2023
  6. Anonim. SDG Target 3.2 End preventable deaths of newborns and children under 5 years of age. 2024
  7. Kemenkes RI. Indikator Program Kesehatan Masyarakat dalam RPJMN dan Rentra Kementerian Kesehatan 2020-2024. Katalog Dalam Terbitan. Kementerian Kesehatan RI. 2020
  8. Kementerian PPN/BAPPENAS. Buku Saku - Terjemahan Tujuan Dan Target Global 17 Tujuan Pembangunan Berkelanjutan. 2021
  9. Ari R, Marliana I, Risma K. Why Are Babies Dying ? (Root Cause Analysis Kematian Bayi Di Karawang). J Ilm Kesehat Diagnosis. 2019;14(4):318–21
  10. As A, Mahsyar A, Malik I. Implementasi Kebijakan Kesehatan Masyarakat Dalam Upaya Menurunkan Angka Kematian Ibu Dan Bayi (Studi Kasus Di Kabupaten Bulukumba Dan Takalar). JPPM J Public Policy Manag. 2020;1:2715–952
  11. World Health Organization. Newborn mortality. 2024
  12. Esmaeilzadeh F, Alimohamadi Y, Sepandi M, Khodamoradi F, Jalali P. The comparing of infant mortality rate in different World Health Organization regions during 1990–2017. Egypt Pediatr Assoc Gaz. 2021;69(1):1–7
  13. Dinas Kesehatan Provinsi Jawa Timur. Profil Kesehatan Provinsi Jawa Timur Tahun 2022. 2023
  14. Dinas Kominfo Provinsi Jawa Timur. BPS : Angka Kematian Bayi di Jatim Tunjukkan Penurunan. 2023
  15. Indra S, Putri M, Purnami CT, Agushybana F, Dharmawan Y. Analisis Spasial Kasus Kematian Balita. J Ris Kesehat Poltekkes Depkes Bandung. 2020;12(2):297–308
  16. Gupta AK, Ladusingh L, Borkotoky K. Spatial clustering and risk factors of infant mortality: District-level assessment of highfocus states in India. Genus. 2016;72(1)
  17. Tamir TT, Alemu TG, Techane MA, Wubneh CA, Assimamaw NT, Belay GM, et al. Prevalence, spatial distribution and determinants of infant mortality in Ethiopia: Findings from the 2019 Ethiopian Demographic and Health Survey. PLoS One. 2023;18(4):1–15
  18. Suryaningrum N, Samosir OB, Djutaharta T. Child Marriage and Infant Mortality in Indonesia: A Spatial Analysis Approach. Al-Sihah Public Heal Sci J. 2023;15(21):175–85
  19. Weiland M, Santana P, Costa C, Doetsch J, Pilot E. Spatial access matters: An analysis of policy change and its effects on avoidable infant mortality in portugal. Int J Environ. Res. Public Health. 2021;18(3):1–18
  20. Araujo GADS, Maranhão TA, Sousa D de B, Sousa GJB, Neto JCGL, Pereira MLD, et al. Spatiotemporal patterns and factors related to infant mortality in Northeast Brazil. Rev Gauch Enferm. 2022;43:1–10
  21. Safitri IY, Tiro MA, Ruliana. Spatial Regression Analysis to See Factors Affecting Food Security at District Level in South Sulawesi Province. ARRUS J Math Appl Sci. 2022;2(2):60–72
  22. Rüttenauer T. Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments. Sociol Methods Res. 2022;51(2):728–59
  23. LeSage J, Pace RK. Introduction to spatial econometrics. Introduction to Spatial Econometrics. New York: Chapman and Hall/CRC; 2009. 340 p
  24. Lam C, Souza PCL. Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model. J Bus Econ Stat. 2020;38(3):693–710
  25. Suryowati K, Bekti RD, Faradila A. A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation. IOP Conf Ser Mater Sci Eng. 2018;335(1)
  26. Zebua HI, Jaya I. Spatial Autoregressive Model of Tuberculosis Cases in Central Java Province 2019. CAUCHY J Mat Murni dan Apl. 2022;7(2)
  27. Balebu GPP, Oktora SI. Determinants of leprosy prevalence in sulawesi island using spatial error model. J Varian. 2022;5(2)
  28. Doğan O, Taşpınar S. GMM estimation of spatial autoregressive models with moving average disturbances. Regional science and urban economics. Elsevier; 2013
  29. Leslie ETA, Buntin MB. A Systematic Approach to Translating Evidence into Practice to Reduce Infant Mortality. Matern Child Health J. 2018;22(11):1550–5
  30. Jana A, Saha UR, Reshmi RS, Muhammad T. Relationship between low birth weight and infant mortality: evidence from National Family Health Survey 2019-21, India. Arch Public Heal. 2023;81(1):1–14
  31. Ye Y, Yang X, Zhao J, He J, Xu X, Li J, et al. Early Vitamin A Supplementation for Prevention of Short-Term Morbidity and Mortality in Very-Low-Birth-Weight Infants: A Systematic Review and Meta-Analysis. Front Pediatr. 2022;10(April)
  32. Hossain S, Mihrshahi S. Exclusive Breastfeeding and Childhood Morbidity: A Narrative Review. Int J Environ. Res. Public Health. 2022;19(22)
  33. Chairiyah R. Determinan Ekonomi, Budaya Dan Jarak Tempat Persalinan Di Desa Ulak Medang Muara Pawan Kalimantan Barat. J Nurs Midwifery Sci. 2022;1(1):26–33
  34. Diallo BA, Bah OH, Barry MS, Conté I. Maternal-fetal prognosis of obstetric emergencies at the maternity ward of the Mamou regional hospital. Int J Reprod Contraception, Obstet Gynecol. 2019;9(1):225
  35. Rodríguez EYA, Rodríguez ECA, Marins FAS, da Silva AF, Nascimento LFC. Spatial patterns of mortality in low birth weight infants at term and its determinants in the State of São Paulo, Brazil. Rev Bras Epidemiol. 2023;26:1–10
  36. Hasnah F, Asyari DP. Analisis Program Pemberian Vitamin a Pada Bayi, Balita Dan Ibu Nifas Berdasarkan Segitiga Kebijakan. J Kesehat Masy. 2023;7(1):1–9
  37. Mathew JL. Does early neonatal vitamin a supplementation reduce infant mortality? Indian Pediatr. 2015;52(4):329–32
  38. Zikrina. Faktor-Faktor yang Mempengaruhi Dalam Pemberian ASI Eksklusif. Idea Nurs J. 2022;XIII(3):7–14
  39. Lusida N. Kualitas Air dan Sanitasi Rumah Tangga terhadap Berat Bayi Lahir di Wilayah Perkotaan Tangerang Selatan. J Kedokt Dan Kesehat. 2024;20:49–54
  40. Pemerintah Provinsi Jawa Timur. Perubahan Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Tahun 2019-2024 Provinsi Jawa Timur. 2021
  41. Anonim. Inovasi Aplikasi e-Detik: Langkah Maju Jawa Timur dalam Menurunkan Angka Kematian Ibu dan Bayi. 2024
  42. Rohmawan UR, Katmini, Kartiningrum ED, Syurandhari DH. Strategi Kebijakan Penurunan Angka Kematian Bayi. Vol. 7, Stikes Majapahit Mojokerto. 2023. 102 p
  43. Murthy S, Yan S Du, Alam S, Kumar A, Rangarajan A, Sawant M, et al. Improving neonatal health with family-centered, early postnatal care: A quasi-experimental study in India. PLOS Glob Public Heal. 2023;3(5):1–11
  44. Pertuak AC, Latue P, Rakuasa H. Spatial Approach in Health Predicting the Spread of Infectious Disease Incidence Rates (Malaria & COVID-19) in Ambon City, Indonesia, A Review. J Heal Sci Med Ther. 2023;1(02):38–48
  45. Molla YB, Rawlins B, Makanga PT, Cunningham M, Ávila JEH, Ruktanonchai CW, et al. Geographic information system for improving maternal and newborn health: Recommendations for policy and programs. BMC Pregnancy Childbirth. 2017;17(1):1–8
  46. Salehi F, Ahmadian L. The application of geographic information systems (GIS) in identifying the priority areas for maternal care and services. BMC Health Serv Res. 2017;17(1):1–8

Last update:

No citation recorded.

Last update:

No citation recorded.