skip to main content

Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Sensitivity Using Electric Fields: A Study on Non-Metal Samples

*Ivan Tanra orcid scopus  -  Department of Electrical Engineering, Universitas Kristen Krida Wacana, West Jakarta, Indonesia, Indonesia
Agus Limanto orcid scopus  -  Department of Health and Medicine, Universitas Kristen Krida Wacana, West Jakarta, Indonesia, Indonesia
Marvin Yonathan Hadiyanto scopus  -  Department of Electrical Engineering, Universitas Kristen Krida Wacana, West Jakarta, Indonesia, Indonesia
Indra Karnadi orcid scopus  -  Department of Electrical Engineering, Universitas Kristen Krida Wacana, West Jakarta, Indonesia, Indonesia
Received: 26 Dec 2024; Revised: 18 Mar 2025; Accepted: 13 Apr 2025; Available online: 31 May 2025; Published: 31 May 2025.

Citation Format:
Cover Image
Abstract

Laser-induced breakdown spectroscopy (LIBS) has proven to be a versatile and effective technique for elemental analysis across a variety of fields, including geology, archaeology, materials science, nuclear power, and medicine. This study focuses on the application of an external electric field to enhance the performance of LIBS, specifically for non-metal samples such as black coral. By introducing an electric field and varying laser energy levels, the effects on plasma generation and emission intensities were investigated. The experimental results demonstrate that applying an electric field significantly enhances spectral intensity, with notable improvements in the Carbon (C I) emission line at 247.8 nm. The enhancement was observed to be nonlinear, with significant increases only when the electric field strength exceeded 200 V/cm. Laser energy was also found to play a critical role, with carbon signals only detectable at energies above 20 mJ, and optimal results achieved at 50 mJ. These findings highlight the combined effect of laser energy and electric field strength in enhancing LIBS sensitivity, particularly for detecting trace elements in organic samples. This approach offers a simple, efficient, and effective method to improve LIBS performance, with potential applications in fields such as fossil age determination and other analytical studies requiring high sensitivity.

Fulltext View|Download
Keywords: Plasma emission; Electric field enhancement; Laser induced breakdown spectroscopy; Spectral signal enhancement
Funding: Ministry of Education, Culture, Research, and Technology

Article Metrics:

  1. . K. Lahna, R. Idroes, N. Idris, S. N. Abdulmadjid, K. H. Kurniawan, M. O. Tjia, M. Pardede, and K. Kagawa, "Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study" Applied Optics, 55(7), 1731-1737, (2016)
  2. . S. Yamaguchi, N. Nishi, and T. Sakka, "Analysis of pulse-to-pulse fluctuation in underwater Laser-Induced Breakdown Spectroscopy on the basis of error propagation calculation" Spectrochimica Acta Part B: Atomic Spectroscopy, 183, 106271, (2021)
  3. . M. M. Suliyanti, S. Sardy, A. Kusnowo, M. Pardede, R. Hedwig, K. H. Kurniawan, T. J. Lie, D. P. Kurniawan, and K. Kagawa, "Preliminary analysis of C and H in a 'Sangiran' fossil using laser-induced plasma at reduced pressure" Journal of Applied Physics, 98(9), 093307, (2005)
  4. . L. Short, A. Thoms, B. Cao, A. Sinyukov, A. Joshi, R. Scully, V. Sanders, and D. V. Voronine, "Facile residue analysis of recent and prehistoric cook stones using handheld Raman spectrometry" Journal of Raman Spectroscopy, 46(1), 126-132, (2015)
  5. . J. D. Pedarnig, S. Trautner, S. Grünberger, N. Giannakaris, S. Eschlböck-Fuchs, and J. Hofstadler, "Review of Element Analysis of Industrial Materials by In-Line Laser-Induced Breakdown Spectroscopy (LIBS)" Applied Sciences, 11(19), 9274, (2021)
  6. . K. H. Kurniawan, T. J. Lie, N. Idris, T. Kobayashi, T. Maruyama, K. Kagawa, M. O. Tjia, and A. Chumakov, "Hydrogen analysis of zircaloy tube used in nuclear power station using laser plasma technique" Journal of Applied Physics, 96(11), 6859-6862, (2004)
  7. . N. Idris, S. Terai, T. J. Lie, H. Kurniawan, T. Kobayashi, T. Maruyama, and K. Kagawa, "Atomic Hydrogen Emission Induced by TEA CO2 Laser Bombardment on Solid Samples at Low Pressure and Its Analytical Application" Applied Spectroscopy, 59(1), 115-120, (2005)
  8. . I. Tanra, I. Karnadi, M. Pardede, R. Hedwig, M. A. Marpaung, K. H. Kurniawan*, and K. Kagawa, "Rapid powder analysis with laser-induced breakdown spectroscopy at low pressure ambient helium gas employing bamboo charcoal as a sample holder" Journal of Laser Applications, 32(3), 032025, (2020)
  9. . R. Gaudiuso, E. Ewusi-Annan, N. Melikechi, X. Sun, B. Liu, L. F. Campesato, and T. Merghoub, "Using LIBS to diagnose melanoma in biomedical fluids deposited on solid substrates: Limits of direct spectral analysis and capability of machine learning" Spectrochimica Acta Part B: Atomic Spectroscopy, 146, 106-114, (2018)
  10. . D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy John Wiley & Sons, (2006)
  11. . G. Nicolodelli, G. S. Senesi, R. A. Romano, I. L. de Oliveira Perazzoli, and D. M. B. P. Milori, "Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils" Spectrochimica Acta Part B: Atomic Spectroscopy, 111, 23-29, (2015)
  12. . A. Hussain, X. Gao, H. Asghar, M. Azam, Q.-A. Ain, and Z. Nawaz, "Enhancement of Laser-induced Breakdown Spectroscopy (LIBS) Signal Subject to the Magnetic Confinement and Dual Pulses" Optical Spectroscopy, 129(4), 452-459, (2021)
  13. . M. Pardede, T. J. Lie, J. Iqbal, M. Bilal, R. Hedwig, M. Ramli, A. Khumaeni, W. S. Budi, N. Idris, S. N. Abdulmadjid, A. M. Marpaung, I. Karnadi, I. Tanra, Z. S. Lie, H. Suyanto, D. P. Kurniawan, K. H. Kurniawan, K. Kagawa, and M. O. Tjia, "H-D Analysis Employing Energy Transfer from Metastable Excited-State He in Double-Pulse LIBS with Low-Pressure He Gas" Analytical Chemistry, 91(2), 1571-1577, (2019)
  14. . M. R. Khan, S. U. Haq, Q. Abbas, and A. Nadeem, "Magnetic field confined laser-induced plasma: Improvement in sensitivity and repeatability" Spectrochimica Acta Part B: Atomic Spectroscopy, 200, 106612, (2023)
  15. . M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. A. Baig, "Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy" Spectrochimica Acta Part B: Atomic Spectroscopy, 148, 143-151, (2018)
  16. . W. A. Farooq, W. Tawfik, Z. A. Alahmed, K. Ahmad, and J. P. Singh, "Role of Purging Gases in the Analysis of Polycarbonate With Laser-Induced Breakdown Spectroscopy" Journal of Russian Laser Research, 35(3), 252-262, (2014)
  17. . A. Hussain, G. Xun, H. Asghar, M. Azam, Q.- Ain, and Z. Nawaz, “Enhancement of Laser-induced Breakdown Spectroscopy (LIBS) Signal Subject to the Magnetic Confinement and Dual Pulses,” Opt. Spectrosc., 129 [4], 452–459, (2021)
  18. . A. Hussain, X. Gao, Z. Hao, and J. Lin, "Combined effects of double pulses and magnetic field on emission enhancement of laser-induced breakdown spectroscopy from aluminum plasma" Optik, 127(20), 10024-10030, (2016)
  19. . N. Ahmed, M. Saddique, M. Jelani, R. Ahmed, M. A. ul Haq, F. W. Khan, J. Iqbal, M. A. Baig, R. Hedwig, and K. H. Kurniawan, "The emission intensity enhancement and improved limit of detection of Cu, Ag, and Au using electric field assisted LIBS" Optical Materials, 143, 114309, (2023)

Last update:

No citation recorded.

Last update:

No citation recorded.