skip to main content

Identification of Malaria Receptive Areas to Support Elimination Maintenance in Gunungkidul District, Indonesia, 2023

*Denis Oxy Handika orcid  -  Master of Public Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Indonesia
Muhamad Imam Utama orcid  -  Field Epidemiology Training Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Indonesia
Dwi Rizki Ananda orcid  -  Field Epidemiology Training Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Indonesia
Sidig Hery Sukoco  -  Gunungkidul District Health Office, Yogyakarta 85512, Indonesia, Indonesia
Riris Andono Ahmad orcid scopus  -  Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Indonesia
Received: 17 Apr 2025; Revised: 25 Oct 2025; Accepted: 30 Oct 2025; Published: 7 Nov 2025.

Citation Format:
Abstract

Background: The Gunungkidul District in Indonesia achieved malaria elimination status in 2014; however, the risk of reintroduction remains due to environmental suitability and population mobility. This study aimed to identify malaria-receptive areas in Gunungkidul District through spatial and environmental analyses to support the strategic maintenance of malaria elimination.

Methods: A descriptive observational study was conducted using secondary data from a vector survey conducted in October 2023 across 18 sub-districts. Geographic Information System (GIS) mapping and larval habitat index (LHI) calculations were used to identify potential Anopheles breeding sites. Climate data from 2020 to 2023 were analyzed to assess environmental receptivity.

Result: Rivers were the most common breeding sites for Anopheles mosquitoes (59.41%), followed by lakes and springs. Gedangsari and Karangmojo sub-districts showed the highest larval habitat indices, indicating localized malaria receptivity in these areas. Climatic factors, such as high rainfall and humidity during the wet season, support year-round mosquito breeding. In 2023, four imported malaria cases were reported, underscoring the district's continued vulnerability.

Conclusion : Spatial identification of malaria-receptive areas provides operational evidence to support the maintenance of the elimination status in the Gunungkidul District. Targeted surveillance and vector control in high-risk sub-districts, along with a rapid response to imported cases, are essential to prevent malaria re-establishment.

Fulltext View|Download
Keywords: elimination status maintenance; malaria-receptive areas; vector survey

Article Metrics:

  1. Chalapareddy SK, Sajid A, Saxena M, Arora K, Guha R, Arora G. Emerging therapeutic modalities against malaria. In: Translational Biotechnology [Internet]. Elsevier; 2021. p. 267–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128219720000186
  2. Ansah EK, Moucheraud C, Arogundade L, Rangel GW. Rethinking integrated service delivery for malaria. Fatokun O, editor. PLOS Glob Public Heal [Internet]. 2022 Jun 1;2(6):e0000462. Available from: https://dx.plos.org/10.1371/journal.pgph.0000462
  3. World Health Organization. World malaria report 2023 [Internet]. Geneva; 2023. Available from: https://www.wipo.int/amc/en/mediation/%0Ahttps://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  4. World Health Organization. Global Malaria Programme operational strategy 2024-2030 [Internet]. Geneva; 2024. 1–84 p. Available from: https://iris.who.int/bitstream/handle/10665/376518/9789240090149-eng.pdf?sequence=1
  5. Thellier M, Gemegah AAJ, Tantaoui I. Global Fight against Malaria: Goals and Achievements 1900–2022. J Clin Med [Internet]. 2024 Sep 24;13(19):5680. Available from: https://www.mdpi.com/2077-0383/13/19/5680
  6. Mwenesi H, Mbogo C, Casamitjana N, Castro MC, Itoe MA, Okonofua F, et al. Rethinking human resources and capacity building needs for malaria control and elimination in Africa. Lindtjorn B, editor. PLOS Glob Public Heal [Internet]. 2022 May 9;2(5):e0000210. Available from: https://dx.plos.org/10.1371/journal.pgph.0000210
  7. Wang ZB, Xie Z, Yan SR, Cao J. Main non-state actors and progress of actions in global malaria elimination programme: A review. Chinese J Schistosomiasis Control. 2020;32(4):436–40
  8. Hemingway J. Vectors: recognising the challenge and reducing neglect. Int Health [Internet]. 2019 Sep 2;11(5):341–3. Available from: https://academic.oup.com/inthealth/article/11/5/341/5558314
  9. Ministry of Health Indonesia. Annual Report 2022 Malaria [Internet]. Directorate General for Disease Prevention and Control. Ministry of Health RI. 2023. Available from: https://www.bca.co.id/-/media/Feature/Report/File/S8/Laporan-Tahunan/20230216-bca-ar-2022-indonesia.pdf
  10. Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 22 Tahun 2022 Tentang penanggulangan Malaria. Indonesia: JDIH BPK; 2022 p. 1–103
  11. Mulyawati A, Sukesi TW, Mulasari SA, Setiawan YD, Yuliani Y, Patmasari Y, et al. Analisis Situasi Luas Wilayah Reseptif Malaria di Kabupaten Gunungkidul Daerah Istimewa Yogyakarta Tahun 2021. Sanitasi J Kesehat Lingkung. 2022;15(1):47–60
  12. Tsoka-Gwegweni JM. Status of malaria and its implications for elimination in an endemic province of South Africa: retrospective analysis. Pan Afr Med J [Internet]. 2022;41. Available from: https://www.panafrican-med-journal.com/content/article/41/275/full
  13. Mao W, Cooke R, Silimperi D, Urli Hodges E, Ortiz E, Udayakumar K. Scaling malaria interventions: bottlenecks to malaria elimination. BMJ Glob Heal [Internet]. 2023 Nov 10;8(11):e013378. Available from: https://gh.bmj.com/lookup/doi/10.1136/bmjgh-2023-013378
  14. Huang F, Feng XY, Zhou SS, Tang LH, Xia ZG. Establishing and applying an adaptive strategy and approach to eliminating malaria: practice and lessons learnt from China from 2011 to 2020. Emerg Microbes Infect [Internet]. 2022 Dec 31;11(1):314–25. Available from: https://www.tandfonline.com/doi/full/10.1080/22221751.2022.2026740
  15. Lalloo DG, Magill AJ. Malaria. In: Travel Medicine [Internet]. Elsevier; 2019. p. 137–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323546966000148
  16. Le PV V., Kumar P, Ruiz MO, Mbogo C, Muturi EJ. Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. Keller DP, editor. PLoS One [Internet]. 2019 Feb 6;14(2):e0211258. Available from: https://dx.plos.org/10.1371/journal.pone.0211258
  17. Ryan SJ, Lippi CA, Zermoglio F. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar J [Internet]. 2020 May 1;19(1):170. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-020-03224-6
  18. Rubuga FK, Ahmed A, Siddig E, Sera F, Moirano G, Aimable M, et al. Potential impact of climatic factors on malaria in Rwanda between 2012 and 2021: a time-series analysis. Malar J [Internet]. 2024 Sep 10;23(1):274. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-024-05097-5
  19. Zhao L, Zhou G, Li C. Research on the impact of tourism cooperation on urban public health. Front Public Heal [Internet]. 2025 Mar 5;13. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1556789/full
  20. Badan Pusat Statistik. Kabupaten Gunungkidul Dalam Angka [Internet]. Gunungkidul; 2022. Available from: https://webapi.bps.go.id/download.php?f=ZVxETftPrB2TGR7dsI5/Kr0sspoQ+wNLnZFUwZWlzmmQr3L3XByzkURJH3hUTSqZSOMbfys8jSrflTqqyMRKfCNebPR1WJ00ZXURD+F2moeeHhbm9I5Ox8v1nebIju9X8+ypM47GWEPEPL0w2v0848ivsQp6H/53uwZ89nnCp8IiSqjaZAV0P8qLp5wgH6TIRxTRr19HY3gL71zVFA4qkOs
  21. Lourenço C, Tatem AJ, Atkinson PM, Cohen JM, Pindolia D, Bhavnani D, et al. Strengthening surveillance systems for malaria elimination: a global landscaping of system performance, 2015–2017. Malar J [Internet]. 2019 Dec 18;18(1):315. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-019-2960-2
  22. Ranathunge RMTB, Kannangara D, Gunatilaka PADHN, Abeyewickreme W, Hapugoda M. Occurrence of major and potential malaria vector immature stages in different breeding habitats and associated biotic and abiotic characters in the district of Trincomalee Sri Lanka. J Vector Borne Dis [Internet]. 2020;57(1):85. Available from: https://journals.lww.com/10.4103/0972-9062.308806
  23. Nikookar SH, Fazeli-Dinan M, Azari-Hamidian S, Mousavinasab SN, Aarabi M, Ziapour SP, et al. Correlation between mosquito larval density and their habitat physicochemical characteristics in Mazandaran Province, northern Iran. Apperson C, editor. PLoS Negl Trop Dis [Internet]. 2017 Aug 18;11(8):e0005835. Available from: https://dx.plos.org/10.1371/journal.pntd.0005835
  24. Multini LC, Oliveira-Christe R, Medeiros-Sousa AR, Evangelista E, Barrio-Nuevo KM, Mucci LF, et al. The Influence of the pH and Salinity of Water in Breeding Sites on the Occurrence and Community Composition of Immature Mosquitoes in the Green Belt of the City of São Paulo, Brazil. Insects [Internet]. 2021 Sep 5;12(9):797. Available from: https://www.mdpi.com/2075-4450/12/9/797
  25. Duchet C, Mukherjee S, Stein M, Spencer M, Blaustein L. Effect of desiccation on mosquito oviposition site selection in Mediterranean temporary habitats. Ecol Entomol [Internet]. 2020 Jun 19;45(3):498–513. Available from: https://resjournals.onlinelibrary.wiley.com/doi/10.1111/een.12821
  26. Poerwanto SH, Ahmad S, Giyantolin, Windyaraini DH. Characterization of mosquitoes breeding site (Diptera: Culicidae) in Bogowonto Lagoon ecosystem, Kulonprogo districts, special region of Yogyakarta, Indonesia. In 2020. p. 040026. Available from: https://pubs.aip.org/aip/acp/article/618855
  27. Linenberg I, Christophides GK, Gendrin M. Larval diet affects mosquito development and permissiveness to Plasmodium infection. Sci Rep [Internet]. 2016 Dec 2;6(1):38230. Available from: https://www.nature.com/articles/srep38230
  28. Getachew D, Balkew M, Tekie H. Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malar J [Internet]. 2020 Dec 11;19(1):65. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-020-3145-8
  29. dos Reis IC, Codeço CT, Degener CM, Keppeler EC, Muniz MM, de Oliveira FGS, et al. Contribution of fish farming ponds to the production of immature Anopheles spp. in a malaria-endemic Amazonian town. Malar J [Internet]. 2015 Dec 14;14(1):452. Available from: http://www.malariajournal.com/content/14/1/452
  30. Brooke BD. Malaria Vector Surveillance and Control in an Elimination Setting in South Africa. Trop Med Infect Dis [Internet]. 2022 Nov 21;7(11):391. Available from: https://www.mdpi.com/2414-6366/7/11/391
  31. Abossie A, Demissew A, Getachew H, Tsegaye A, Degefa T, Habtamu K, et al. Higher outdoor mosquito density and Plasmodium infection rates in and around malaria index case households in low transmission settings of Ethiopia: Implications for vector control. Parasit Vectors [Internet]. 2024 Feb 6;17(1):53. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-023-06088-2
  32. Djègbè NDC, Da DF, Somé BM, Paré LIG, Cissé F, Mamai W, et al. Anopheles aquatic development kinetic and adults’ longevity through different seasons in laboratory and semi-field conditions in Burkina Faso. Parasit Vectors [Internet]. 2024 Apr 8;17(1):181. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-024-06260-2
  33. Belay AK, Asale A, Sole CL, Yusuf AA, Torto B, Mutero CM, et al. Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasit Vectors [Internet]. 2024 Oct 3;17(1):412. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-024-06496-y
  34. Agyekum TP, Arko‐Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, et al. Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Trop Med Int Heal [Internet]. 2022 Apr 18;27(4):338–46. Available from: https://onlinelibrary.wiley.com/doi/10.1111/tmi.13732
  35. Murdock CC, Sternberg ED, Thomas MB. Malaria transmission potential could be reduced with current and future climate change. Sci Rep [Internet]. 2016 Jun 21;6(1):27771. Available from: https://www.nature.com/articles/srep27771
  36. Leite LN, Bascuñán P, Dotson EM, Benedict MQ. Anopheles Adult Anesthesia, Feeding, and Sex Separation. Cold Spring Harb Protoc [Internet]. 2024 Mar;2024(3):pdb.prot108188. Available from: http://www.cshprotocols.org/lookup/doi/10.1101/pdb.prot108188
  37. Prasad P, Gupta SK, Mahto KK, Kumar G, Rani A, Velan I, et al. Influence of climatic factors on the life stages of Aedes mosquitoes and vectorial transmission: A review. J Vector Borne Dis [Internet]. 2024 Apr;61(2):158–66. Available from: https://journals.lww.com/10.4103/jvbd.jvbd_42_24
  38. Kodindo ID, Saleh IDM, Betrand FN, Boulotigam K, Mahamat HM, Belemel FD, et al. Impact des inondations induites par le changement climatique sur la transmission du paludisme à N’Djaména. Int J Biol Chem Sci [Internet]. 2025 Jan 13;18(5):1683–90. Available from: https://www.ajol.info/index.php/ijbcs/article/view/285898
  39. Bakare EA, Onasanya BO, Hoskova-Mayerova S, Olubosede O. Analysis of Control Interventions against Malaria in communities with Limited Resources. Analele Univ “Ovidius” Constanta - Ser Mat [Internet]. 2021 Jun 1;29(2):71–91. Available from: https://www.sciendo.com/article/10.2478/auom-2021-0019
  40. Xu JW, Lin ZR, Zhou YW, Lee R, Shen HM, Sun XD, et al. Intensive surveillance, rapid response and border collaboration for malaria elimination: China Yunnan’s ‘“3 + 1”’strategy. Malar J [Internet]. 2021 Dec 9;20(1):396. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03931-8
  41. Munsense IM, Tsoka-Gwegweni JM. Perceived Health System Challenges of Implementing Cross-Border Malaria Preventive Measures at Ports of Entry in KwaZulu-Natal. Ann Glob Heal [Internet]. 2023 Apr 27;89(1). Available from: https://annalsofglobalhealth.org/articles/10.5334/aogh.3992/

Last update:

No citation recorded.

Last update:

No citation recorded.