skip to main content

Design of Development Waste Heat Recovery in Metal Casting Industry: Exploring Energy Saving Potentials

1Teknik Energi Terbarukan, Universitas Dharma Persada , Jakarta Timur, Indonesia

2Universitas Indonesia, Indonesia

3Universitas Gadjah Mada, Indonesia

Open Access Copyright (c) 2026 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The metal casting industry is known for its energy-intensive consumption and the generation of large amounts of waste heat and materials during the melting, casting, and cooling processes. If this heat is not utilized properly, it not only causes environmental degradation but also contributes to significant economic inefficiencies. Therefore, the need for more sustainable practices is increasingly driving the industry to seek solutions to optimize energy consumption and reduce waste. One promising solution is the implementation of waste heat recovery (WHR) systems, which aim to model waste heat recovery, evaluate potential energy savings, and provide solutions to improve sustainability in the sector. By developing hybrid system designs that combine fossil fuels and renewable energy sources, such as solar panels (PV), batteries, and inverters, the industry can reduce its reliance on fossil fuels while improving overall energy efficiency. Furthermore, the implementation of WHR technology not only offers technical benefits but also contributes to lower operational expenses and carbon emissions, as demonstrated by the reduction in unit production costs from various simulations. These results demonstrate that this new system has positive economic and environmental impacts, creating a more environmentally friendly and sustainable solution for the metal casting industry.

Fulltext View|Download
Keywords: Energy Efficiency; Waste Heat Recovery (WHR); Waste Heat And Materials; Energy Consumption Optimization; Carbon Emission Reduction; Industrial Sustainability.

Article Metrics:

  1. Anastasovski, A., Rasković, P., & Guzović, Z. (2020). A review of heat integration approaches for organic
  2. rankine cycle with waste heat in production processes. Energy Conversion and Management, 221
  3. https://doi.org/10.1016/j.enconman.2020.113175
  4. Bonilla-Campos, I., Nieto, N., del Portillo-Valdes, L., Egilegor, B., Manzanedo, J., & Gaztañaga, H. (2019)
  5. Energy efficiency assessment: Process modelling and waste heat recovery analysis. Energy Conversion
  6. and Management, 196, 1180–1192. https://doi.org/10.1016/j.enconman.2019.06.074
  7. Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies,
  8. environmental impacts and possibilities for waste heat recovery. In International Journal of Thermofluids
  9. (Vols. 1–2). Elsevier B.V. https://doi.org/10.1016/j.ijft.2019.100007
  10. Cao, H., Chen, E., Yi, H., Li, H., Zhu, L., & Wen, X. (2021). Multi-level energy efficiency evaluation for die
  11. casting workshop based on fog-cloud computing. Energy, 226
  12. https://doi.org/10.1016/j.energy.2021.120397
  13. Carabalí, D. M., Forero, C. R., & Cadavid, Y. (2018). Energy diagnosis and structuring an energy saving
  14. proposal for the metal casting industry: An experience in Colombia. Applied Thermal Engineering, 137,
  15. –773. https://doi.org/10.1016/j.applthermaleng.2018.04.012
  16. Dokl, M., Gomilšek, R., Čuček, L., Abikoye, B., & Kravanja, Z. (2022). Maximizing the power output and net
  17. present value of organic Rankine cycle: Application to aluminium industry. Energy, 239
  18. https://doi.org/10.1016/j.energy.2021.122620
  19. Douadi, O., Ravi, R., Faqir, M., & Essadiqi, E. (2022). A conceptual framework for waste heat recovery from
  20. compression ignition engines: Technologies, working fluids & heat exchangers. In Energy Conversion and
  21. Management: X (Vol. 16). Elsevier Ltd. https://doi.org/10.1016/j.ecmx.2022.100309
  22. Egilegor, B., Jouhara, H., Zuazua, J., Al-Mansour, F., Plesnik, K., Montorsi, L., & Manzini, L. (2020). ETEKINA:
  23. Analysis of the potential for waste heat recovery in three sectors: Aluminium low pressure die casting,
  24. steel sector and ceramic tiles manufacturing sector. International Journal of Thermofluids, 1–2
  25. https://doi.org/10.1016/j.ijft.2019.100002
  26. El Boudali, J., Mansouri, K., & Qbadou, M. (2022). Modelling the design of the reverse logistics network for
  27. metal waste. 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and
  28. Technology, IRASET 2022. https://doi.org/10.1109/IRASET52964.2022.9737793
  29. Elsaid, K., Taha Sayed, E., Yousef, B. A. A., Kamal Hussien Rabaia, M., Ali Abdelkareem, M., & Olabi, A. G
  30. (2020). Recent progress on the utilization of waste heat for desalination: A review. In Energy Conversion
  31. and Management (Vol. 221). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2020.113105
  32. Farhat, O., Faraj, J., Hachem, F., Castelain, C., & Khaled, M. (2022). A recent review on waste heat recovery
  33. methodologies and applications: Comprehensive review, critical analysis and potential
  34. recommendations. In Cleaner Engineering and Technology (Vol. 6). Elsevier Ltd
  35. https://doi.org/10.1016/j.clet.2021.100387
  36. Haraldsson, J., Johnsson, S., Thollander, P., & Wallén, M. (2021). Taxonomy, saving potentials and key
  37. performance indicators for energy end‐use and greenhouse gas emissions in the aluminium industry
  38. and aluminium casting foundries. Energies, 14(12). https://doi.org/10.3390/en14123571
  39. Huang, Y. F., Weng, M. W., Hoang, T. T., & Lai, I. S. (2021, August 29). Circular economy policy of bike
  40. industry- exploring the optimal eto component under imperfect production processes system. 2021
  41. IEEE International Conference on Social Sciences and Intelligent Management, SSIM 2021
  42. https://doi.org/10.1109/SSIM49526.2021.9555214
  43. Jarimi, H., Aydin, D., Yanan, Z., Ozankaya, G., Chen, X., & Riffat, S. (2019). Review on the recent progress of
  44. thermochemical materials and processes for solar thermal energy storage and industrial waste heat
  45. recovery. In International Journal of Low-Carbon Technologies (Vol. 14, Issue 1, pp. 44–69). Oxford
  46. University Press. https://doi.org/10.1093/ijlct/cty052
  47. Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat
  48. recovery technologies and applications. In Thermal Science and Engineering Progress (Vol. 6, pp. 268–289)
  49. Elsevier Ltd. https://doi.org/10.1016/j.tsep.2018.04.017
  50. Kan, M. (2023). Determination of the casting-mold interface heat transfer coefficient for numerically diecasting process depending on different mold temperatures. Journal of Mechanical Science and Technology,
  51. (1), 427–433. https://doi.org/10.1007/s12206-022-1240-1
  52. Liu, W., Peng, T., Kishita, Y., Umeda, Y., Tang, R., Tang, W., & Hu, L. (2021). Critical life cycle inventory for
  53. aluminum die casting: A lightweight-vehicle manufacturing enabling technology. Applied Energy, 304
  54. https://doi.org/10.1016/j.apenergy.2021.117814
  55. Liu, Y., & Xiong, S. (2024). Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum
  56. Alloys. In Metals (Vol. 14, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI)
  57. https://doi.org/10.3390/met14040370
  58. Luceño-Sánchez, J. A., Díez-Pascual, A. M., & Capilla, R. P. (2019). Materials for photovoltaics: State of art
  59. and recent developments. In International Journal of Molecular Sciences (Vol. 20, Issue 4). MDPI AG
  60. https://doi.org/10.3390/ijms20040976
  61. Luthin, A., Backes, J. G., & Traverso, M. (2021). A framework to identify environmental-economic trade-offs
  62. by combining life cycle assessment and life cycle costing – A case study of aluminium production
  63. Journal of Cleaner Production, 321. https://doi.org/10.1016/j.jclepro.2021.128902
  64. Ortega-Fernández, I., & Rodríguez-Aseguinolaza, J. (2019). Thermal energy storage for waste heat recovery
  65. in the steelworks: The case study of the REslag project. Applied Energy, 237, 708–719
  66. https://doi.org/10.1016/j.apenergy.2019.01.007
  67. Oyedepo, S. O., & Fakeye, B. A. (2021). WASTE HEAT RECOVERY TECHNOLOGIES: PATHWAY TO
  68. SUSTAINABLE ENERGY DEVELOPMENT. In Journal of Thermal Engineering (Vol. 7, Issue 1). Yildiz
  69. Technical University Press
  70. Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U., & Micale, G. (2018). Industrial waste heat:
  71. Estimation of the technically available resource in the EU per industrial sector, temperature level and
  72. country. Applied Thermal Engineering, 138, 207–216. https://doi.org/10.1016/j.applthermaleng.2018.04.043
  73. Saiful, R., Yandri, E., Hilmi, E., Hamja, N., Uhanto, U., Fitriani, F., & Ibrahim, R. F. (2024). Optimizing
  74. Motorcycle Manufacturing Sustainability through the Integration of Waste Heat Recovery and Metal
  75. Scrap Recycling: A Process Engineering Approach. Leuser Journal of Environmental Studies, 2(2), 75–85
  76. https://doi.org/10.60084/ljes.v2i2.225
  77. Saiful, R., Yandri, E., Hilmi, E., Nasrullah, N., Uhanto, U., Fitriani, F., & Firmandha Ibrahim, R. (2024)
  78. Optimizing Motorcycle Manufacturing Sustainability through the Integration of Waste Heat Recovery
  79. and Metal Scrap Recycling: A Process Engineering Approach. Leuser Journal of Environmental Studies,
  80. (2). https://doi.org/10.60084/ljes.v2i2.225
  81. Salonitis, K., Jolly, M., Pagone, E., & Papanikolaou, M. (2019). Life-cycle and energy assessment of automotive
  82. component manufacturing: The dilemma between aluminum and cast iron. Energies, 12(13)
  83. https://doi.org/10.3390/en12132557
  84. Su, Z., Zhang, M., Xu, P., Zhao, Z., Wang, Z., Huang, H., & Ouyang, T. (2021). Opportunities and strategies
  85. for multigrade waste heat utilization in various industries: A recent review. In Energy Conversion and
  86. Management (Vol. 229). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2020.113769
  87. Sunddararaj, S. P., Rangarajan, S. S., & Subashini, N. (2020). An extensive review of multilevel inverters based
  88. on their multifaceted structural configuration, triggering methods and applications. In Electronics
  89. (Switzerland) (Vol. 9, Issue 3). MDPI AG. https://doi.org/10.3390/electronics9030433
  90. Thompson, A., & Taylor, B. N. (n.d.). NIST Special Publication 811 2008 Edition Guide for the Use of the
  91. International System of Units (SI) SI m A K cd mol kg s
  92. Vairavasundaram, I., Varadarajan, V., Pavankumar, P. J., Kanagavel, R. K., Ravi, L., & Vairavasundaram, S
  93. (2021). A review on small power rating pv inverter topologies and smart pv inverters. In Electronics
  94. (Switzerland) (Vol. 10, Issue 11). MDPI AG. https://doi.org/10.3390/electronics10111296
  95. Wazeer, A., Das, A., Abeykoon, C., Sinha, A., & Karmakar, A. (2023). Composites for electric vehicles and
  96. automotive sector: A review. In Green Energy and Intelligent Transportation (Vol. 2, Issue 1). Elsevier B.V
  97. https://doi.org/10.1016/j.geits.2022.100043
  98. Woolley, E., Luo, Y., & Simeone, A. (2018). Industrial waste heat recovery: A systematic approach. Sustainable
  99. Energy Technologies and Assessments, 29, 50–59. https://doi.org/10.1016/j.seta.2018.07.001
  100. Wu, W., Du, Y., Qian, H., Fan, H., Jiang, Z., Zhang, X., & Huang, S. (2024). Enhancing the waste heat utilization
  101. of industrial park: A heat pump-centric network integration approach for multiple heat sources and
  102. users. Energy Conversion and Management, 306. https://doi.org/10.1016/j.enconman.2024.118306
  103. Xu, Z. Y., Wang, R. Z., & Yang, C. (2019). Perspectives for low-temperature waste heat recovery. Energy, 176,
  104. –1043. https://doi.org/10.1016/j.energy.2019.04.001
  105. Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H., Widodo, W., Zahoor, M.,
  106. Zekker, I., & Lomi, A. (2022). Technical design of aluminium scrap processing machines by utilizing
  107. direct exhaust air using conveyor drying system. Proceedings of the Estonian Academy of Sciences, 71(2),
  108. –185. https://doi.org/10.3176/proc.2022.2.01
  109. Yandri, E., Suherman, S., Lomi, A., Setyobudi, R. H., Ariati, R., Pramudito, P., Ronald, R., Ardiani, Y.,
  110. Burlakovs, J., Zahoor, M., Shah, L. A., Fauzi, A., Tonda, R., & Iswahyudi, I. (2024). Sustainable energy
  111. efficiency in aluminium parts industries utilizing waste heat and equivalent volume with energy
  112. management control system. Proceedings of the Estonian Academy of Sciences, 73(1), 29–42
  113. https://doi.org/10.3176/proc.2024.1.04
  114. Zhang, Y., Cai, Y., Liu, S., Su, Z., & Jiang, T. (2023). Life cycle assessment of aluminum-silicon alloy production
  115. from secondary aluminum in China. Journal of Cleaner Production, 392
  116. https://doi.org/10.1016/j.jclepro.2023.136214

Last update:

No citation recorded.

Last update:

No citation recorded.