skip to main content

Literatiur Review: Pengaruh Sistem Kontrol Wave Energy Konverter (WEC) Untuk Pengoptimalan Daya Keluaran

Jurusan Teknik mesin, Universitas Negeri Surabaya, Indonesia, Indonesia

Open Access Copyright (c) 2026 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Pelamis merupakan salah satu jenis wave energy converter (WEC) yang memanfaatkan gerakan relatif antar segmen silindernya untuk mengubah energi gelombang laut menjadi energi listrik. Penelitian ini bertujuan untuk menganalisis pengaruh variasi energi kinetik gelombang laut terhadap efisiensi konversi energi oleh Pelamis, dengan fokus pada penerapan strategi kontrol optimal. Melalui pemodelan dinamis dan simulasi dalam lingkungan MATLAB Simulink, dilakukan analisis terhadap tiga skenario: tanpa kontrol, kontrol PID, dan kontrol optimal. Energi kinetik gelombang dimodelkan melalui gelombang regular dengan parameter ketinggian dan periode yang divariasikan sesuai teori gelombang linear. Hasil simulasi menunjukkan bahwa variasi energi kinetik gelombang secara signifikan memengaruhi respon dinamis Pelamis, termasuk percepatan sudut, torsi PTO, dan daya keluaran. Strategi kontrol optimal berhasil meningkatkan efisiensi konversi energi hingga 10 kali lipat dibandingkan sistem tanpa kontrol, dan lebih dari dua kali lipat dibandingkan kontrol PID. Penerapan kontrol optimal juga mampu menyinkronkan pergerakan antar silinder dengan fase gelombang, memaksimalkan daya yang diserap dari gelombang laut. Temuan ini menegaskan pentingnya adaptasi sistem kontrol dalam menghadapi variasi energi kinetik gelombang untuk meningkatkan performa konversi energi pada Pelamis.

 

 
Fulltext View|Download
Keywords: Konverter Energi Gelombang (WEC), Pelamis, Variasi Energi Kinetik, Kontrol Optimal, Efisiensi Konversi Energi

Article Metrics:

  1. Abdelkhalik, O., Arani, A. K., & Yu, Y.-H. (2020). A review of control strategies for wave energy converters. Renewable and Sustainable Energy Reviews, 123, 109753. https://doi.org/10.1016/j.rser.2020.109753
  2. Alam, M. R., Nguyen, H., & Alam, M. (2021). Wave energy converter hydrodynamics and control: A review. Renewable Energy, 172, 1327–1342. https://doi.org/10.1016/j.renene.2021.03.099
  3. Bao, Y., Zhang, H., & Mei, C. C. (2021). Power absorption performance of wave energy converters in irregular seas. Ocean Engineering, 239, 109780. https://doi.org/10.1016/j.oceaneng.2021.109780
  4. Cruz, J. (Ed.). (2016). Ocean wave energy: Current status and future perspectives. Springer. https://doi.org/10.1007/978-3-319-39889-1
  5. Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(8), 887–902. https://doi.org/10.1243/09576509JPE782
  6. Faltinsen, O. M., & Timokha, A. N. (2009). Sloshing. Cambridge University Press. https://doi.org/10.1017/CBO9780511635266
  7. Folley, M. (2016). Numerical modelling of wave energy converters. Academic Press
  8. Henry, A., & Thomas, G. (2020). Hydrodynamic modelling of wave energy devices. Renewable Energy, 151, 1196–1212. https://doi.org/10.1016/j.renene.2019.11.096
  9. Hossain, M. U., & Goggins, J. (2019). Life cycle environmental and economic performance of a wave energy converter. Renewable Energy, 132, 25–36. https://doi.org/10.1016/j.renene.2018.07.134
  10. Iglesias, G., & Carballo, R. (2019). Wave energy and the environment: Review. Renewable and Sustainable Energy Reviews, 124, 109782. https://doi.org/10.1016/j.rser.2020.109782
  11. Ingram, D., Smith, G., Bittencourt Ferreira, C., & Smith, H. C. M. (2014). Protocols for the equitable assessment of marine energy converters. University of Edinburgh
  12. Jin, Y., & Zhang, J. (2020). Model predictive control of wave energy converters: Review and future directions. Renewable and Sustainable Energy Reviews, 123, 109742. https://doi.org/10.1016/j.rser.2020.109742
  13. Kofoed, J. P. (2015). Wave energy converters: Design and implementation. Wiley
  14. Lehmann, M., Haggstrom, O., & Castro-Santos, L. (2022). Advances in wave energy technology and deployment. Ocean Engineering, 256, 111429. https://doi.org/10.1016/j.oceaneng.2022.111429
  15. Li, G., & Belmont, M. R. (2014). Control design and analysis for wave energy conversion systems. IEEE Transactions on Control Systems Technology, 22(1), 239–254. https://doi.org/10.1109/TCST.2013.2241031
  16. Lenee-Bluhm, P., Paasch, R., & Özkan-Haller, H. T. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy, 36(8), 2106–2119. https://doi.org/10.1016/j.renene.2011.01.027
  17. Mingham, C. G., & Henry, A. (2022). Challenges in numerical modeling of WECs. Journal of Ocean Engineering and Science, 7(4), 466–476. https://doi.org/10.1016/j.joes.2021.05.002
  18. Moan, T. (2021). Marine structures for renewable energy devices. Marine Structures, 75, 102850. https://doi.org/10.1016/j.marstruc.2020.102850
  19. Neary, V. S., et al. (2014). Methodology for characterization of wave energy. Sandia National Laboratories
  20. Payne, G. S., Taylor, J. R. M., & Ingram, D. M. (2009). Best practice guidelines for tank testing of wave energy converters. European Marine Energy Centre (EMEC)
  21. Penna, P., & van der Meer, J. (2022). Wave loading on multi-body WECs: Experimental validation. Ocean Engineering, 251, 111125. https://doi.org/10.1016/j.oceaneng.2021.111125
  22. Rezanejad, K., et al. (2018). Advanced control strategies for WECs. IEEE Transactions on Sustainable Energy, 9(3), 1405–1413. https://doi.org/10.1109/TSTE.2017.2766189
  23. Richards, H., Henry, A., & Babarit, A. (2015). Adaptive control of a wave energy converter in a random sea. Renewable Energy, 81, 293–305. https://doi.org/10.1016/j.renene.2015.03.041
  24. Salter, S. (1974). Wave power. Nature, 249(5459), 720–724. https://doi.org/10.1038/249720a0
  25. Sheng, W., & Lewis, A. (2017). Numerical simulation of wave energy conversion systems. Renewable Energy, 111, 979–991. https://doi.org/10.1016/j.renene.2017.05.025
  26. Têtu, A., et al. (2021). Impact of wave climate on WEC performance. Energy Conversion and Management, 239, 114187. https://doi.org/10.1016/j.enconman.2021.114187
  27. Vakili, A., Pourzangbar, A., Ettefagh, M. M., & Abdollahi Haghghi, M. (2025). Optimal control strategy for enhancing energy efficiency of Pelamis wave energy converter: a Simulink-based simulation approach. Renewable Energy Focus, 53, 100685. https://doi.org/10.1016/j.ref.2025.100685
  28. Wang, H., & Ringwood, J. V. (2016). Optimal control of a heaving WEC. Control Engineering Practice, 53, 27–38. https://doi.org/10.1016/j.conengprac.2016.04.004
  29. Yu, Y. H., & Li, Y. (2013). A review of WEC technology and performance metrics. Applied Ocean Research, 39, 1–10. https://doi.org/10.1016/j.apor.2012.10.003
  30. Zang, Z., & Huang, J. (2023). Adaptive machine learning control for WECs. Applied Energy, 331, 120309. https://doi.org/10.1016/j.apenergy.2022.120309
  31. Zhao, X., Li, Z., & Zuo, L. (2023). Optimal control of wave energy converters under real sea states. Energy Conversion and Management, 285, 116988. https://doi.org/10.1016/j.enconman.2023.116988

Last update:

No citation recorded.

Last update:

No citation recorded.