skip to main content

Review Metode Pengolahan Sampah Kota Menjadi Energi

1Universitas Bung Hatta, Indonesia

2Universitas Ahmad Dahlan, Indonesia

Open Access Copyright (c) 2026 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Meningkatnya pertumbuhan penduduk di perkotaan di Indonesia secara tidak langsung meningkatkan produksi sampah kota (MSW). Limbah padat kota didefinisikan sebagai limbah yang dikumpulkan oleh pemerintah kota atau dibuang di tempat pembuangan limbah kota dan mencakup limbah perumahan, industri, institusi, komersial, kota, serta konstruksi dan pembongkaran. Pengelolaan sampah kota dapat menggantikan bahan bakar fosil yang tidak terbarukan melalui proses konvensional dan non-konvensional. Tulisan ini menggunakan metode tinjauan literatur. Kriteria artikel yang dijadikan sumber primer adalah artikel berjenis penelitian asli. Tujuan dilakukannya proses kajian pustaka ini adalah untuk memberikan informasi mengenai pengolahan dan pemanfaatan sampah sesuai dengan kondisi daerah masing-masing sehingga dapat dijadikan rujukan atau rujukan dalam menjadikan sampah sebagai sumber energi sehingga dapat melindungi dan merawat. untuk lingkungan. Teknologi konvensional seperti pengomposan, pencernaan anaerobik, dan proses pembakaran menyajikan langkah-langkah utama dalam pengolahan sampah menjadi energi. Teknologi non-konvensional dibahas secara rinci untuk sampah anorganik, seperti pirolisis, gasifikasi, dan oksidasi basah. Pirolisis dapat mengubah 80-84% sampah kota menjadi syngas dan biochar
Fulltext View|Download
Keywords: Konversi Energi, Pengolahan Sampah, Sampah Kota, Sampah Menjadi Energi

Article Metrics:

  1. OECD (2022), Municipal waste (indicator). doi: 10.1787/89d5679a-en(Accessedon06November2022)
  2. A. Kumar and S. R. Samadder, “A review on technological options of waste to energy for effective management of municipal solid waste,” Waste Manag., vol. 69, pp. 407–422, 2017, doi: 10.1016/j.wasman.2017.08.046
  3. Monice and Perinov. “Analisis Potensi Sampah Sebagai Bahan Baku Pembangkit Listrik Tenaga Sampah (Pltsa) Di Pekanbaru,” SainETIn, vol. 1, no. 1, pp. 9–16, 2017, doi: 10.31849/sainetin.v1i1.166
  4. S. K. Awasthi et al., “Processing of municipal solid waste resources for a circular economy in China: An overview,” Fuel, vol. 317, no. February, p. 123478, 2022, doi: 10.1016/j.fuel.2022.123478
  5. BP, “BP Statistical Review of World Energy 2022,( 71st edition),” [online] London BP Stat. Rev. World Energy., pp. 1–60, 2022, [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
  6. J. J. Randolph, “A guide to writing the dissertation literature review,” Pract. Assessment, Res. Eval., vol. 14, no. 13, 2009
  7. Fang, Shiwen, et al. "Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)." Energy 143 (2018): 517-532. https://doi.org/10.1016/j.energy.2017.11.038
  8. Stąsiek, Jan, and Marek Szkodo. "Thermochemical conversion of biomass and municipal waste into useful energy using advanced HiTAG/HiTSG technology." Energies 13.16 (2020): 4218. https://doi.org/10.3390/en13164218
  9. H. E. Putra, E. Damanhuri, K. Dewi, and A. D. Pasek, “Hydrothermal treatment of municipal solid waste into coal-like fuel,” IOP Conf. Ser. Earth Environ. Sci., vol. 483, no. 1, 2020, doi: 10.1088/1755-1315/483/1/012021
  10. J. Kleib, G. Aouad, N. E. Abriak, and M. Benzerzour, “Production of Portland cement clinker from French Municipal Solid Waste Incineration Bottom Ash,” Case Stud. Constr. Mater., vol. 15, p. e00629, 2021, doi: 10.1016/j.cscm.2021.e00629
  11. H. Farouk, A. Lang, F. Tahir, and S. G. Al-Ghamdi, “Municipal solid waste: A potential source of clean energy for Khartoum State in Sudan,” Energy Reports, vol. 8, pp. 342–349, 2022, doi: 10.1016/j.egyr.2022.05.145
  12. T. Resmianty, A. M. Fauzi, E. Hartulistiyoso, and S. Pertiwi, “Potential Utilization of Municipal Solid Waste in Landfill Mining TPST Bantargebang Bekasi to Become Refuse Derived Fuel (RDF) Feed Stock,” J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., vol. 12, no. 2, pp. 281–289, 2022, doi: 10.29244/jpsl.12.2.281-289
  13. S. Wang et al., “Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept,” Energy, vol. 252, 2022, doi: 10.1016/j.energy.2022.124056
  14. M. T. Munir, A. Mohaddespour, A. T. Nasr, and S. Carter, “Municipal solid waste-to-energy processing for a circular economy in New Zealand,” Renew. Sustain. Energy Rev., vol. 145, no. April, p. 111080, 2021, doi: 10.1016/j.rser.2021.111080
  15. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 2009;100:5444–53. https://doi.org/10.1016/j.biortech.2008.11.027
  16. Klejment E, Rosi´nski M. Testing of thermal properties of compost from municipal waste with a view to using it as a renewable, low temperature heat source. Bioresour Technol 2008;99:8850–5. https://doi.org/10.1016/j.biortech.2008.04.053
  17. Irvine, G., E. R. Lamont, and B. Antizar-Ladislao. "Energy from waste: reuse of compost heat as a source of renewable energy." International Journal of Chemical Engineering 2010 (2010). https://doi.org/10.1155/2010/627930
  18. Hilkiah Igoni A, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy 2008;85:430–8. https://doi.org/10.1016/j.apenergy.2007.07.013
  19. Jain S, Jain S, Wolf IT, Lee J, Tong YW. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 2015;52:142–54. DOI: 10.1016/j.rser.2015.07.091
  20. J. Amulen, H. Kasedde, J. Serugunda, and J. D. Lwanyaga, “The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration,” Energy Convers. Manag. X, vol. 14, no. February, p. 100204, 2022, doi: 10.1016/j.ecmx.2022.100204
  21. D. Chen, L. Yin, H. Wang, and P. He, “Pyrolysis technologies for municipal solid waste: A review,” Waste Manag., vol. 34, no. 12, pp. 2466–2486, 2014, doi: 10.1016/j.wasman.2014.08.004
  22. D. V. Suriapparao, A. A. Gupta, G. Nagababu, T. H. Kumar, J. S. Sasikumar, and H. H. Choksi, “Production of aromatic hydrocarbons from microwave-assisted pyrolysis of municipal solid waste (MSW),” Process Saf. Environ. Prot., vol. 159, pp. 382–392, 2022, doi: 10.1016/j.psep.2022.01.014

Last update:

No citation recorded.

Last update:

No citation recorded.