skip to main content

Potensi Energi Gelombang Laut di Indonesia: Studi Kasus Teknologi WaveForce di pantai Tanjung Siambang

Universitas Maritim Raja Ali Haji, Indonesia

Open Access Copyright (c) 2026 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Energi gelombang laut menawarkan potensi besar sebagai sumber energi terbarukan, khususnya di Indonesia dengan garis pantai lebih dari 80.000 km. Penelitian ini mengeksplorasi efektivitas teknologi WaveForce, konverter energi gelombang laut (Wave Energy Converter, WEC), yang dirancang untuk memanfaatkan potensi gelombang laut di Indonesia. Studi dilakukan di Tanjung Siambang, Kepulauan Riau, dengan metode pengukuran langsung untuk mengamati pola dinamika gelombang dan efisiensi sistem konversi energi. Hasil penelitian menunjukkan bahwa WaveForce mampu mengubah energi mekanik dari gelombang menjadi energi listrik, meskipun tantangan terkait efisiensi dan daya tahan masih ditemukan. Studi ini menegaskan pentingnya pengembangan teknologi dan dukungan kebijakan untuk memaksimalkan potensi energi gelombang laut.
Fulltext View|Download

Article Metrics:

  1. Anderson, P., Brown, T., & Smith, J. (2020). Environmental impact of wave energy converters on marine ecosystems. Journal of Sustainable Marine Technology, 28(1), 75–88
  2. Bali Energy Authority. (2022). Proyek energi gelombang laut di Nusa Dua: Solusi energi terbarukan untuk Bali. Bali Energy Authority Report
  3. BETI. (2023). Potensi energi gelombang laut di Indonesia. Badan Energi Terbarukan Indonesia
  4. Cheng, L., Zhang, W., & Lee, S. (2022). Optimization of wave energy converter locations. Energy & Environment Journal, 40(5), 340–360
  5. Dewi, I., & Supriyadi, R. (2023). Wave energy resources in Bali: A preliminary study on feasibility and potential for wave energy development. Indonesian Journal of Renewable Energy, 17(2), 45–59
  6. Harris, R., Nguyen, P., & Thompson, M. (2019). Ocean wave energy and stability in coastal energy systems. Marine Energy Journal, 12(4), 231–245
  7. Jones, A., & Brown, T. (2020). Wave energy potential and technology development. Renewable Energy Journal, 60, 112–130
  8. López, P., Garcia, M., & Martinez, R. (2023). Oscillating water column wave energy converters: An overview of performance and design approaches. Renewable Energy, 158, 1095–1112
  9. Mulyadi, H. (2022). Renewable energy policy development in Indonesia: Regulatory frameworks and future directions. Journal of Energy Policy and Law, 35(3), 23–39
  10. Purnama, S., & Setiawan, D. (2023). Feasibility study on wave energy potential in Indonesia: A review of location selection criteria. Journal of Clean Energy Technologies, 14(4), 167–176
  11. Rahman, F., & Abdullah, M. (2022). Technical challenges in wave energy conversion. Renewable Mechanical Engineering Journal, 35(3), 150–168
  12. Santos, E., Gomez, J., & Ruiz, A. (2023). Advances in composite materials for wave energy converters: Enhancing durability and performance. Journal of Composite Materials, 57(10), 1359–1374
  13. Smith, J., Allen, K., & Wilson, D. (2021). Transition to renewable energy: Global challenges and opportunities. Journal of Environmental Studies, 45(3), 345–360
  14. Suharno, M., & Mustika, R. (2023). Community empowerment through renewable energy: A case study in the development of wave energy projects in Indonesia. Community Development Journal, 58(1), 112–128
  15. Wibowo, F. (2022). Financial mechanisms for renewable energy projects in Indonesia: Opportunities and challenges for investment in wave energy. Journal of Energy Economics, 48, 221–235

Last update:

No citation recorded.

Last update:

No citation recorded.