skip to main content

Prospek Potensial Mikroalga Sebagai Biofuel Di Kepulauan Riau Guna Mewujudkan Net Zero Emission

Program Studi Pendidikan Kimia, Universitas Maritim Raja Ali Haji, Jalan Raya Dompak, Tanjungpinang, Indonesia, 29124, Indonesia

Open Access Copyright (c) 2024 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Kepulauan Riau memiliki kondisi lingkungan yang ideal serta memiliki iklim tropis yang hangat untuk budidaya mikroalga. Mikroalga merupakan salah satu dari sumber daya laut yang masih belum dimanfaatkan di daerah ini meskipun mempunyai keunggulan dari berbagai macam bidang, terutama biofuel. Penelitian ini bertujuan untuk mengidentifikasi besarnya prospek pemanfaatan mikroalga di Kepulauan Riau sebagai biofuel. Metode yang digunakan adalah metode kajian literatur sistematis. Ada tiga tahapan dalam penggunaan metode ini, yakni tahap perencanaan, tahap tinjauan dan tahap melaporkan hasil. Hasil penelitian menunjukkan bahwa ada 8 jenis mikroalga yang dapat dikembangkan sebagai biofuel di Kepulauan Riau, yakni Chlorella, Spirulina, Spirogyra, Scenedesmus, Nitzschia, Navicula, Anabaena, dan Microcystis. Prospek pemanfaatannya relatif besar dikarenakan keanekaragaman hayati yang didukung oleh iklim tropis yang cocok untuk dilakukan budidaya mikroalga. Selain itu, garis pantai yang panjang juga dapat mendukung budidaya mikroalga secara besar-besaran. Sayangnya, masih memiliki keterbatasan dalam hal teknologi dan infrastruktur pembangunan biofuel ini. Oleh karenanya, diperlukan dukungan dan komitmen pemerintah dalam pembiayaan dan investasi industri biofuel agar terwujudnya Net Zero Emission di Indonesia, terutama Kepulauan Riau.

Fulltext View|Download
Keywords: Emisi Gas Rumah Kaca, Biofuel, Kepulauan Riau, Mikroalga
Funding: Universitas Maritim Raja Ali Haji

Article Metrics:

  1. Aloui, F., Varuvel, E. G., & Sonthalia, A. (2023). Battery thermal management through simulation and experiment: Air cooling and enhancement. In S. Shahid & M. Agelin-Chaab (Eds.), Handbook of Thermal Management Systems (pp. 223–254). Megan R. Ball
  2. Armenta, S., Esteve-Turrillas, F. A., Garrigues, S., & Guardia, M. de la. (2021). Smart materials for sample preparation in bioanalysis: A green overview. Sustainable Chemistry and Pharmacy, 21(September 2020), 100411. https://doi.org/10.1016/j.scp.2021.100411
  3. Aswie, V., Qadariyah, L., & Mahfud, M. (2021). Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 16(1), 205–213. https://doi.org/10.9767/bcrec.16.1.10316.205-213
  4. Chaos-Hernández, D., Reynel-Ávila, H. E., Bonilla-Petriciolet, A., & Villalobos-Delgado, F. J. (2023). Extraction methods of algae oils for the production of third generation biofuels – A review. Chemosphere, 341(November), 139856. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.139856
  5. Chen, W. H., Lin, B. J., Huang, M. Y., & Chang, J. S. (2015). Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology, 184, 314–327. https://doi.org/10.1016/j.biortech.2014.11.050
  6. Chen, Y., Ren, S., & Ma, Y. (2024). The impact of eco-preneurship and green technology on greenhouse gas emissions - An analysis of East Asian economies. Heliyon, 10(8), e29083. https://doi.org/10.1016/j.heliyon.2024.e29083
  7. Cheung, W. W. L., & Frölicher, T. L. (2020). Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-63650-z
  8. Dinanti, P., Sundari, S., Laksmono, R., Ramadhan, T. R., & Sianipar, L. (2024). Analisis Biaya Ekonomi Serta Dampak Lingkungan Penggunaan Gasoline dan Biofuel Sebagai Bahan Bakar Transportasi. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 5(4), 2027–2040. https://doi.org/10.47467/elmal.v5i4.871
  9. Donovan, M. K., Burkepile, D. E., Kratochwill, C., Shlesinger, T., Sully, S., Oliver, T. A., Hodgson, G., Freiwald, J., & van Woesik, R. (2021). Local conditions magnify coral loss after marine heatwaves. Science, 372(6545), 977–980. https://doi.org/10.1126/science.abd9464
  10. El-Mekkawi, S. A., El-Ibiari, N. N., El-Ardy, O. A., Abdelmonem, N. M., Elahwany, A. H., Abadir, M. F., & Ismail, I. M. (2020). Optimization of cultivation conditions for Microcystis aeruginosa for biodiesel production using response surface methodology. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-019-0265-9
  11. Erlangga, Yudho Andika, Imanullah, Imamshadiqin, Syahrin, A., Siregar, D. F., & Ramadansyah, S. (2022). Identifikasi Mikroalga Laut Potensial Sebagai Bahan Baku Biodiesel Di Kecamatan Banda Sakti Kota Lhokseumawe. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 14(1), 147–160. https://doi.org/10.29244/jitkt.v14i1.39258
  12. Fiveriati, A., Yonatan, Y., Anne, O., & Gamawati Adinurani, P. (2020). Characteristic Biofuel Microalgae Chlorella sp. as Renewable Energy Source. E3S Web of Conferences, 190. https://doi.org/10.1051/e3sconf/202019000002
  13. Ge, S., Brindhadevi, K., Xia, C., & Salah, A. (2022). Enhancement of the combustion , performance and emission characteristics of spirulina microalgae biodiesel blends using nanoparticles. Fuel, 308, 121822. https://doi.org/10.1016/j.fuel.2021.121822
  14. Harini, A. B., Rajkumar, R., & Takriff, M. S. (2020). Enhanced Production of Lipid as Biofuel Feedstock from the Marine Diatom Nitzschia sp. by Optimizing Cultural Conditions. BioResources, 15(4), 7532–7550. https://doi.org/10.15376/biores.15.4.7532-7550
  15. Hernandi, R., Dharma, A., & Armaini, A. (2019). Penapisan, Isolasi, dan Karakterisasi Mikroalga yang Berpotensi Sebagai Sumber Biodiesel. Jurnal Litbang Industri, 9(1), 48
  16. Jain, S. (2023). An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture. Energies, 16(3), 1470. https://doi.org/10.3390/en16031470
  17. Kamal Baharin, N. S., Ikeda, Y., Moizumi, K., & Ida, T. (2024). Conversion of bio-coke from Spirulina platensis microalgae as an alternative sustainable energy. Case Studies in Chemical and Environmental Engineering, 9, 100709. https://doi.org/10.1016/j.cscee.2024.100709
  18. Khotimah, K. (2018). Membangun Ketahanan Energi Pendukung Pertahanan Maritim Melalui Pemanfaatan Mikroalga Sebagai Biodiesel Bagi Masyarakat Pesisir. Jurnal Pertahanan & Bela Negara, 8(1), 67–84. https://doi.org/10.33172/jpbh.v8i1.266
  19. Koech, A. K., Kumar, A., & Siagi, Z. O. (2020). In Situ Transesterification of Spirulina Microalgae to Produce Biodiesel Using Microwave Irradiation. Journal of Energy, 2020, 1–10. https://doi.org/10.1155/2020/8816296
  20. Larasati, I., Yusril, A. N., & Zukri, P. Al. (2021). Systematic Literature Review Analisis Metode Agile Dalam Pengembangan Aplikasi Mobile. Sistemasi, 10(2), 369. https://doi.org/10.32520/stmsi.v10i2.1237
  21. Lestari, R. D. A., Apriansyah, A., & Safitri, I. (2020). Struktur Komunitas Mikroalga Epifit Berasosiasi Pada Padina sp. di Perairan Desa Sepempang Kabupaten Natuna. Jurnal Laut Khatulistiwa, 3(2), 40. https://doi.org/10.26418/lkuntan.v3i2.37844
  22. Magalhães, B. da C., Matricon, L., Romero, L.-A. R., Checa, R., Lorentz, C., Chambonniere, P., Delrue, F., Roubaud, A., Afanasiev, P., Laurenti, D., & Geantet, C. (2023). Catalytic hydrotreatment of bio-oil from continuous HTL of Chlorella sorokiniana and Chlorella vulgaris microalgae for biofuel production. Biomass and Bioenergy, 173(June), 106798. https://doi.org/https://doi.org/10.1016/j.biombioe.2023.106798
  23. Mcleman, R., & Bruntrup, M. (2022). Urban Water Crisis and Management Strategies for Sustainable Development. In A. L. Srivast, S. Madhav, A. K. Bhardwaj, & E. Valsami-Jones (Eds.), Current Directions in Water Scarcity Research (pp. 45–63). Elsevier
  24. Nag Dasgupta, C., Nayaka, S., Toppo, K., Singh, A. K., Deshpande, U., & Mohapatra, A. (2018). Draft genome sequence and detailed characterization of biofuel production by oleaginous microalga Scenedesmus quadricauda LWG002611 06 Biological Sciences 0604 Genetics. Biotechnology for Biofuels, 11(1), 1–15. https://doi.org/10.1186/s13068-018-1308-4
  25. Neag, E., Stupar, Z., Maicaneanu, S. A., & Roman, C. (2023). Advances in Biodiesel Production from Microalgae. Energies, 16(3), 19–22. https://doi.org/10.3390/en16031129
  26. Negara, B. F. S., Nursalim, N., Herliany, N. E., Renta, P. P., Purnama, D., & Utami, M. A. F. (2019). Peranan dan Pemanfaatan Mikroalga Tetraselmis chuii Sebagai Bioetanol. Jurnal Enggano, 4(2), 136–147. https://doi.org/10.31186/jenggano.4.2.136-147
  27. Oliva, G., Buonerba, A., Grassi, A., Hasan, S. W., Korshin, G. V., Zorpas, A. A., Belgiorno, V., Naddeo, V., & Zarra, T. (2024). Microalgae to biodiesel: A novel green conversion method for high-quality lipids recovery and in-situ transesterification to fatty acid methyl esters. Journal of Environmental Management, 357(April), 120830. https://doi.org/10.1016/j.jenvman.2024.120830
  28. Olufemi, B., Sulaimon, S., & Arikawe, A. (2020). Optimum production and characterization of biodiesel from spirogyra algae. El-Cezeri Journal of Science and Engineering, 7(3), 1529–1541. https://doi.org/10.31202/ecjse.749486
  29. Padder, S. A., Khan, R., & Rather, R. A. (2024). Biofuel generations: New insights into challenges and opportunities in their microbe-derived industrial production. Biomass and Bioenergy, 185, 107220. https://doi.org/https://doi.org/10.1016/j.biombioe.2024.107220
  30. Palanisamy, K. M., Karthiani, K., Rahim, M. H. A., Govindan, Natanamurugaraj Pragas, G., & Maniam. (2020). Acceleration of Lipid Accumulation in Oleaginous Diatom Navicula sp. Under Nitrogen Limitation. IOP Conference Series: Earth and Environmental Science, 618(1), 120. https://doi.org/10.1088/1755-1315/618/1/012033
  31. Pandey, A., Srivastava, S., & Kumar, S. (2024). Scenedesmus sp. ASK22 cultivation using simulated dairy wastewater for nutrient sequestration and biofuel production: insight into fuel properties and their blends. Biomass Conversion and Biorefinery, 14(3), 3305–3317
  32. Popovich, C. A., Pistonesi, M., Hegel, P., Constenla, D., Bielsa, G. B., Martín, L. A., Damiani, M. C., & Leonardi, P. I. (2019). Unconventional alternative biofuels: Quality assessment of biodiesel and its blends from marine diatom Navicula cincta. Algal Research, 39, 101438. https://doi.org/10.1016/j.algal.2019.101438
  33. Rahmawati, S., Agustini, R. K., & Efritadewi, A. (2023). Analisis Dampak Serta Penanggulangan Tumpahan Minyak di Perairan Bintan. Aufklarung: Jurnal Pendidikan, Sosial Dan Humaniora, 3(4), 1–8
  34. Rodoshi Khan, N., & Bin Rashid, A. (2024). Carbon-Based Nanomaterials: a Paradigm Shift in Biofuel Synthesis and Processing for a Sustainable Energy Future. Energy Conversion and Management: X, 22(April), 100590. https://doi.org/10.1016/j.ecmx.2024.100590
  35. Romadhona, S. L., Masyhur, A. Z., Yuliantika, S. F., Hamdani, D. F., Rijaal, F. A., & Mirzayanti, Y. W. (2024). Perkembangan Biodiesel di Indonesia: Review Regulasi dan Perspektif pada Masa Mendatang. Seminar Nasional Teknologi Industri Berkelanjutan III (SENASTITAN III), 4(1), 1–5. http://link.springer.com/10.1007/978-3-319-59379-1%0Ahttp://dx.doi.org/10.1016/B978-0-12-420070-8.00002-7%0Ahttp://dx.doi.org/10.1016/j.ab.2015.03.024%0Ahttps://doi.org/10.1080/07352689.2018.1441103%0Ahttp://www.chile.bmw-motorrad.cl/sync/showroom/lam/es/
  36. Sabu, S., Singh, I. S. B., & Joseph, V. (2019). Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach. 3 Biotech, 9(12), 1–15. https://doi.org/10.1007/s13205-019-1968-1
  37. Saeed, A., Hanif, M. A., Hanif, A., Rashid, U., Iqbal, J., Majeed, M. I., Moser, B. R., & Alsalme, A. (2021). Production of biodiesel from spirogyra elongata, a common freshwater green algae with high oil content. Sustainability (Switzerland), 13(22), 1–10. https://doi.org/10.3390/su132212737
  38. Salisu, A., Umar, B., Appah, J., Aina, V. O., Tanimu, Y., & Yahaya, U. (2022). Effects Of Nitrogen Concentrations On The Biomass, Lipid And Biodiesel Production Potentials Of Spirogyra Specie. Nigerian Journal of Biotechnology, 38(2), 134–139. https://doi.org/10.4314/njb.v38i2.14
  39. Senthamilselvi, D., & Kalaiselvi, T. (2023). Gamma ray mutants of oleaginous microalga Chlorella sp. KM504965 with enhanced biomass and lipid for biofuel production. Biomass Conversion and Biorefinery, 13(17), 15501–15517
  40. Shafay, S. M. El, Gaber, A., Alsanie, W. F., & Elshobary, M. E. (2021). Influence of nutrient manipulation on growth and biochemical constituent in anabaena variabilis and nostoc muscorum to enhance biodiesel production. Sustainability (Switzerland), 13(16), 9081. https://doi.org/10.3390/su13169081
  41. Siagian, Y., Widiastuti, L., Sitindaon, S. H., Atrie, U. Y., & Wati, L. (2023). Comparative study of decompression events in traditional divers and modern divers. Jurnal Ilmiah Kesehatan Sandi Husada, 12(2), 367–375. https://doi.org/10.35816/jiskh.v12i2.1094
  42. Singh, V., Ikram, S. F., & Tripathi, B. N. (2023). Exploring the potential of freshwater algal species for biofuel production. Frontiers in Energy Research, 11(September), 1–13. https://doi.org/10.3389/fenrg.2023.1271660
  43. Song, Y., Xie, L., Zhang, X., Hu, Z., Li, S., Zhang, P., & Yang, X. (2024). Enhancement of biomass, lipid accumulation, and carbon sequestration potential in microalgae via cultivation with Aggregation-Induced emission Light-Conversion films. Chemical Engineering Journal, 483(February), 149148. https://doi.org/10.1016/j.cej.2024.149148
  44. Touliabah, H. E., Abdel-Hamid, M. I., & Almutairi, A. W. (2020). Long-term monitoring of the biomass and production of lipids by Nitzschia palea for biodiesel production. Saudi Journal of Biological Sciences, 27(8), 2038–2046. https://doi.org/10.1016/j.sjbs.2020.04.014
  45. Triyastuti, M. S. (2023). Review : Metode Pengeringan Lipid dari Mikroalgae Berpotensi sebagai Biodiesel. Science Technology and Management Journal, 3(2), 43–52. https://doi.org/10.53416/stmj.v3i2.99
  46. Velvizhi, G., Jacqueline, P. J., Shetti, N. P., K, L., Mohanakrishna, G., & Aminabhavi, T. M. (2023). Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. Journal of Environmental Management, 345(November), 118527. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118527
  47. Wei, C., Xu, Y., Li, Y., Wei, W., Feng, Y., Li, Z., & Xu, L. (2024). Life-cycle assessment of microalgae liquid biofuel production in biofilm cultivation system via conversion technologies of transesterification, hydrothermal liquefaction and pyrolysis. Journal of Cleaner Production, 436, 140559
  48. Yan, Y., Pang, Y. X., Luo, X., Lin, Q., Pang, C. H., Zhang, H., Gao, X., & Wu, T. (2024). Carbon dioxide-focused greenhouse gas emissions from petrochemical plants and associated industries: Critical overview, recent advances and future prospects of mitigation strategies. Process Safety and Environmental Protection, 188(May), 406–421. https://doi.org/10.1016/j.psep.2024.05.136
  49. Yang, L., Ren, L., Tan, X., Chu, H., Chen, J., Zhang, Y., & Zhou, X. (2020). Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. Bioresource Technology, 315, 123738. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123738
  50. Ye, Y., Guo, W., Ngo, H. H., Wei, W., Cheng, D., Bui, X. T., Hoang, N. B., & Zhang, H. (2024). Biofuel production for circular bioeconomy: Present scenario and future scope. Science of the Total Environment, 935, 172863. https://doi.org/10.1016/j.scitotenv.2024.172863

Last update:

No citation recorded.

Last update:

No citation recorded.