skip to main content

Analisa Optimalisasi “Abandoned Well Production” Menggunakan “Downhole Heat Exchanger (DHE)” Sebagai Sumber Energi Baru di Lapangan Panas Bumi Dieng

1Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

2Departement Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2021 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract
Dari potensi lapangan panasbumi di area WKP Dieng yang baru bisa dimanfaatkan sebesar 10,3% dari total cadangannya atau sebesar 60 MW dari 580 MW potensi energi panasbumi di area tersebut. Sumur produksi di lapangan Dieng ada beberapa yang sudah tidak ekonomis untuk digunakan pada Pembangkit Listrik Tenaga Panasbumi (PLTP) konvensional. Salah satu sumur produksi yang sudah tidak bernilai ekonomis, sudah ditinggalkan (abandoned), (dari data aktual yang didapat sumur tersebut masih memiliki potensi energi yang dapat digunakan pada sistem Binary Plant dengan mengkombinasikan sistem Downhole Heat Exchanger (DHE). Dari beberapa penelitian mengenai DHE system lebih banyak digunakan sebagai pemanas dan masih sangat rendah untuk dimanfaatkan sebagai power generated. Penelitian ini bertujuan untuk memanfaatkan abandoned production well di area lapangan panasbumi Dieng dapat dioptimalisasi sebagai alternatif baru untuk menghasilkan energi listrik. Dari potensi yang dimiliki oleh salah satu sumur produksi tersebut memiliki temperature gradien sebesar 7°C/100 m pada kedalaman 3000 m. Dari potensi tersebut didapatkan hipotesa awal dengan membandingkan penelitian-penelitian terdahulu bahwa pemanfaatan sumur abandoned dapat menghasilkan ouput netto daya listrik sebesar kurang lebih 3 MW. Namun pada penilitian ini hanya sebatas melakukan perbandingan teknologi DHE system dengan menggunakan karakteristik kondisi sumur yang sama, sehingga selanjutnya perlu dilakukan analisa termodinamika, pemodelan sistem dan keekonomiannya terhadap kelayakan investasi sistem DHE-Binary Plant di lapangan panasbumi Dieng.
Fulltext View|Download
Keywords: DHE; PLTP; Dieng

Article Metrics:

  1. Acuña, J. (2010). Improvements of U-pipe Borehole Heat Exchangers. In Division of Applied Thermodynamic and Refrigeration, KTH Energy and Environmental Technology
  2. Alimonti, C., Soldo, E., Bocchetti, D., & Berardi, D. (2018). The wellbore Heat Exchangers: A technical review. Renewable Energy, 123, 353–381. https://doi.org/10.1016/j.renene.2018.02.055
  3. Ashat, A., Ridwan, R., Prabata, T., Situmorang, J., Adityawan, S., & Ibrahim, R. (2019). NUMERICAL SIMULATION UPDATE of DIENG GEOTHERMAL FIELD, CENTRAL JAVA, INDONESIA. Proceeding 41st New Zealand Geothermal Workshop 2019, November
  4. Aydin, H., Akin, S., & Tezel, S. (2018). Practical Experiences about Reservoir Monitoring in Alaşehir Geothermal Field. 43rd Workshop on Geothermal Reservoir Engineering Stanford University, February, 1–8
  5. BPPT. (2019). Indonesia Energy Outlook 2019: The Impact of Increased Utilization of New and Renewable Energy on the National Economy. Pusat Pengkajian Industri Proses dan Energi (PPIPE)
  6. Dai, C., Li, J., Shi, Y., Zeng, L., & Lei, H. (2019). An experiment on heat extraction from a deep Geothermal well using a downhole coaxial open loop design. Applied Energy, 252(May), 113447. https://doi.org/10.1016/j.apenergy.2019.113447
  7. Duchane, D., & Brown, D. (2002). Hot dry rock (HDR) Geothermal energy research and development at Fenton Hill, New Mexico. Geo-Heat Centre Quarterly Bulletin, 23, 13–19
  8. Feng, Y., Tyagi, M., & White, C. D. (2015). A downhole Heat Exchanger for horizontal wells in low-enthalpy geopressured Geothermal brine reservoirs. Geothermics, 53, 368–378. https://doi.org/10.1016/j.geothermics.2014.07.007
  9. Gharibi, S., Mortezazadeh, E., Hashemi Aghcheh Bodi, S. J., & Vatani, A. (2018). Feasibility study of Geothermal heat extraction from abandoned oil wells using a U-Tube Heat Exchanger. Energy, 153, 554–567. https://doi.org/10.1016/j.energy.2018.04.003
  10. Gordon, D., Bolisetti, T., Ting, D. S. K., & Reitsma, S. (2018). Experimental and analytical investigation on pipe sizes for a coaxial borehole Heat Exchanger. Renewable Energy, 115, 946–953. https://doi.org/10.1016/j.renene.2017.08.088
  11. Kementerian ESDM. (2019). Handbook of Energy and Economic Statistics of Indonesia 2016. In Kementerian Energi dan Sumber Daya Mineral. https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia.pdf
  12. Layman, E. B., Agus, I., & Warsa, S. (2002). The Dieng Geothermal Resource, Central Java, Indonesia. Transactions - Geothermal Resources Council, January 2002, 573–579
  13. Lund, J. W. (2003). The use of downhole Heat Exchangers. Geothermics, 32(4), 535–543. https://doi.org/10.1016/j.geothermics.2003.06.002
  14. Lund, J. W., & Boyd, T. L. (2016). Direct utilization of Geothermal energy 2015 worldwide review. Geothermics, 60, 66–93. https://doi.org/10.1016/j.geothermics.2015.11.004
  15. Pambudi, N. A., Itoi, R., Yamashiro, R., CSS Syah Alam, B. Y., Tusara, L., Jalilinasrabady, S., & Khasani, J. (2015). The behavior of silica in Geothermal brine from Dieng Geothermal power plant, Indonesia. Geothermics, 54, 109–114. https://doi.org/10.1016/j.geothermics.2014.12.003
  16. Sliwa, T., & Rosen, M. A. (2015). Natural and artificial methods for regeneration of heat resources for borehole Heat Exchangers to enhance the sustainability of underground thermal storages: A review. Sustainability (Switzerland), 7(10), 13104–13125. https://doi.org/10.3390/su71013104
  17. Spitler, J. D., Javed, S., & Ramstad, R. K. (2016). Natural convection in groundwater-filled boreholes used as ground Heat Exchangers. Applied Energy, 164, 352–365. https://doi.org/10.1016/j.apenergy.2015.11.041
  18. Steins, C., Bloomer, A., & Zarrouk, S. (2012). Improving the performance of the down-hole Heat Exchanger at the Alpine Motel, Rotorua, New Zealand. Geothermics, 44, 1–12. https://doi.org/10.1016/j.geothermics.2012.04.003
  19. Yildirim, N., Parmanto, S., & Akkurt, G. G. (2019). Thermodynamic assessment of downhole Heat Exchangers for Geothermal power generation. Renewable Energy, 141, 1080–1091. https://doi.org/10.1016/j.renene.2019.04.049
  20. Zacchini, E., Lazzari, S., & Priarone, A. (2010). Improving the thermal performance of coaxial borehole Heat Exchangers. Energy, 35, 657–666. https://doi.org/10.1016/j.energy.2009.10.038
  21. Zarrouk, S. J., Woodhurst, B. C., & Morris, C. (2014). Silica scaling in Geothermal Heat Exchangers and its impact on pressure drop and performance: Wairakei Binary Plant, New Zealand. Geothermics, 51, 445–459. https://doi.org/10.1016/j.geothermics.2014.03.005

Last update:

No citation recorded.

Last update:

No citation recorded.