skip to main content

Review of the temperature and holding time effects on hydroxyapatite fabrication from the natural sources

*Akhlis Rahman Nurhidayat  -  Universitas Diponegoro, Indonesia
A. P Bayuseno  -  Universitas Diponegoro, Indonesia
Rifky Ismail  -  Universitas Diponegoro, Indonesia
Rilo Berdin Taqriban  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract
Biomaterial development is currently being carried out to help people who have daily needs. Hydroxyapatite has biocompatibility properties and suitables for the use as a biomaterial. Hydroxyapatite can be found in natural sources sometimes as waste. One of the hydroxyapatite fabrication methods is calcination process. Calcination and sintering are used to obtain the desired Ca/P ratio of the hydroxyapatite. This paper reviews several research which have been published by researchers to withdraw the connection during calcination process, with respect to the temperature and holding time effects on hydroxyapatite fabrication from the natural organism. The effect of temperature and holding time determines the yield of Ca/P ratio which affects the resulting mechanical properties. Choosing the right temperature and holding time will produce Ca/P which meets the standard
Fulltext View|Download
Keywords: Calcination, Ca/P, Hydroxyapatite, Mechanical properties, Sintering.

Article Metrics:

  1. S. Mazumder, A. K. Nayak, T. J. Ara, and M. S. Hasnain, Hydroxyapatite composites for dentistry. Elsevier Inc., 2018
  2. I. Partheniadis, T. Papanikolaou, M. F. Noisternig, U. J. Griesser, N. Kantiranis, and I. Nikolakakis, “Structure reinforcement of porous hydroxyapatite pellets using sodium carbonate as sintering aid: Microstructure, secondary phases and mechanical properties,” Adv. Powder Technol., vol. 30, no. 8, pp. 1642–1654, 2019
  3. L. González-Rodríguez, M. López-Álvarez, S. Astray, E. L. Solla, J. Serra, and P. González, “Hydroxyapatite scaffolds derived from deer antler: Structure dependence on processing temperature,” Mater. Charact., vol. 155, no. June, 2019
  4. N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, and T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019
  5. A. Niakan et al., “Sintering behaviour of natural porous hydroxyapatite derived from bovine bone,” Ceram. Int., vol. 41, no. 2, pp. 3024–3029, 2015
  6. E. C. Victoria and C. Robinson M, “Comparative studies on synthesis and sintering studies of biologically derived hydroxyapatite from Capria hircus (Goat) and Bos primigenius (Bovine),” Vacuum, vol. 160, no. November 2018, pp. 378–383, 2019
  7. P. Terzioğlu, H. Öğüt, and A. Kalemtaş, “Natural calcium phosphates from fish bones and their potential biomedical applications,” Mater. Sci. Eng. C, vol. 91, no. September 2017, pp. 899–911, 2018
  8. C. Piccirillo, R. C. Pullar, E. Costa, A. Santos-Silva, M. M. E. Pintado, and P. M. L. Castro, “Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study,” Mater. Sci. Eng. C, vol. 51, pp. 309–315, 2015
  9. B. R. Sunil and M. Jagannatham, “Producing hydroxyapatite from fish bones by heat treatment,” Mater. Lett., vol. 185, no. September, pp. 411–414, 2016
  10. P. V. Nam, N. Van Hoa, and T. S. Trung, “Properties of hydroxyapatites prepared from different fish bones: A comparative study,” Ceram. Int., vol. 45, no. 16, pp. 20141–20147, 2019
  11. S. Bramhe, T. N. Kim, A. Balakrishnan, and M. C. Chu, “Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowires,” Mater. Lett., vol. 135, pp. 195–198, 2014
  12. M. F. Alif, W. Aprillia, and S. Arief, “A hydrothermal synthesis of natural hydroxyapatite obtained from Corbicula moltkiana freshwater clams shell biowaste,” Mater. Lett., vol. 230, pp. 40–43, 2018
  13. S. C. Wu, H. C. Hsu, S. K. Hsu, C. P. Tseng, and W. F. Ho, “Preparation and characterization of hydroxyapatite synthesized from oyster shell powders,” Adv. Powder Technol., vol. 28, no. 4, pp. 1154–1158, 2017
  14. J. Chen, Z. Wen, S. Zhong, Z. Wang, J. Wu, and Q. Zhang, “Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion,” Mater. Des., vol. 87, pp. 445–449, 2015
  15. P. Kamalanathan et al., “Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor,” Ceram. Int., vol. 40, no. PB, pp. 16349–16359, 2014
  16. S. Ramesh et al., “Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method,” Ceram. Int., vol. 42, no. 6, pp. 7824–7829, 2016
  17. V. Trakoolwannachai, P. Kheolamai, and S. Ummartyotin, “Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material,” Compos. Part B Eng., vol. 173, no. April, 2019
  18. A. Fahami, R. Ebrahimi-Kahrizsangi, and B. Nasiri-Tabrizi, “Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite,” Solid State Sci., vol. 13, no. 1, pp. 135–141, 2011
  19. S. H. Rhee, “Synthesis of hydroxyapatite via mechanochemical treatment,” Biomaterials, vol. 23, no. 4, pp. 1147–1152, 2002
  20. S. Padilla, M. Vallet-Regí, M. P. Ginebra, and F. J. Gil, “Processing and mechanical properties of hydroxyapatite pieces obtained by the gelcasting method,” J. Eur. Ceram. Soc., vol. 25, no. 4, pp. 375–383, 2005
  21. O. Prokopiev and I. Sevostianov, “Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature,” Mater. Sci. Eng. A, vol. 431, no. 1–2, pp. 218–227, 2006
  22. S. Paul et al., “Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity,” Ceram. Int., vol. 43, no. 17, pp. 15678–15684, 2017
  23. A. Fihri, C. Len, R. S. Varma, and A. Solhy, “Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis,” Coord. Chem. Rev., vol. 347, pp. 48–76, 2017
  24. M. N. Hassan, M. M. Mahmoud, G. Link, A. A. El-Fattah, and S. Kandil, “Sintering of naturally derived hydroxyapatite using high frequency microwave processing,” J. Alloys Compd., vol. 682, pp. 107–114, 2016
  25. S. Pramanik, A. K. Agarwal, K. N. Rai, and A. Garg, “Development of high strength hydroxyapatite by solid-state-sintering process,” Ceram. Int., vol. 33, no. 3, pp. 419–426, 2007
  26. C. Zhou et al., “Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering,” J. Mech. Behav. Biomed. Mater., vol. 48, pp. 1–11, 2015
  27. A. Yelten-Yilmaz and S. Yilmaz, “Wet chemical precipitation synthesis of hydroxyapatite (HA) powders,” Ceram. Int., vol. 44, no. 8, pp. 9703–9710, 2018
  28. M. Yetmez, Z. E. Erkmen, C. Kalkandelen, A. Ficai, and F. N. Oktar, “Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite,” Mater. Sci. Eng. C, vol. 77, pp. 470–475, 2017
  29. S. Salman et al., “Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium,” Ceram. Int., vol. 35, no. 7, pp. 2965–2971, 2009
  30. J. Nie, J. Zhou, X. Huang, L. Wang, G. Liu, and J. Cheng, “Effect of TiO 2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering,” Ceram. Int., vol. 45, no. 11, pp. 13647–13655, 2019
  31. M. F. Vassal, J. Nunes-Pereira, S. P. Miguel, I. J. Correia, and A. P. Silva, “Microstructural, mechanical and biological properties of hydroxyapatite - CaZrO 3 biocomposites,” Ceram. Int., vol. 45, no. 7, pp. 8195–8203, 2019
  32. J. Song, Y. Liu, Y. Zhang, and L. Jiao, “Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies,” Mater. Sci. Eng. A, vol. 528, no. 16–17, pp. 5421–5427, 2011
  33. M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo, “Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone,” Ceram. Int., vol. 36, no. 8, pp. 2383–2393, 2010
  34. W. Khoo, F. M. Nor, H. Ardhyananta, and D. Kurniawan, “Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures,” Procedia Manuf., vol. 2, no. February, pp. 196–201, 2015
  35. E. Barua et al., “Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste,” Ceram. Int., vol. 45, no. 17, pp. 23265–23277, 2019
  36. M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. De Carlos, and B. León, “Biological hydroxyapatite obtained from fish bones,” Mater. Sci. Eng. C, vol. 32, no. 3, pp. 478–486, 2012
  37. T. Goto and K. Sasaki, “Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination,” Ceram. Int., vol. 40, no. 7 PART B, pp. 10777–10785, 2014
  38. Q. Zhu et al., “The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones,” Ceram. Int., vol. 43, no. 15, pp. 12213–12220, 2017
  39. G. Vidhya, G. Suresh Kumar, V. S. Kattimani, and E. K. Girija, “Comparative study of hydroxyapatite prepared from eggshells and synthetic precursors by microwave irradiation method for medical applications,” Mater. Today Proc., vol. 15, pp. 344–352, 2019
  40. S. Ramesh et al., “Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications,” Ceram. Int., vol. 44, no. 9, pp. 10525–10530, 2018
  41. C. Piccirillo, R. C. Pullar, D. M. Tobaldi, P. M. L. Castro, and M. M. E. Pintado, “Hydroxyapatite and chloroapatite derived from sardine by-products,” Ceram. Int., vol. 40, no. 8 PART B, pp. 13231–13240, 2014
  42. A. Sobczak-Kupiec and Z. Wzorek, “The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite,” Ceram. Int., vol. 38, no. 1, pp. 641–647, 2012
  43. E. Barua, A. B. Deoghare, P. Deb, S. Das Lala, and S. Chatterjee, “Effect of pre-treatment and calcination process on micro-structural and physico-chemical properties of hydroxyapatite derived from chicken bone bio-waste,” Mater. Today Proc., vol. 15, pp. 188–198, 2019
  44. A. Pal, S. Paul, A. R. Choudhury, V. K. Balla, M. Das, and A. Sinha, “Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications,” Mater. Lett., vol. 203, pp. 89–92, 2017
  45. G. Muralithran and S. Ramesh, “The effects of sintering temperature on the properties of hydroxyapatite,” Ceram. Int., vol. 26, pp. 221–230, 2000
  46. M. Safarzadeh, C. F. Chee, S. Ramesh, and M. N. A. Fauzi, “Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA),” Ceram. Int., vol. 46, no. 17, pp. 26784–26789, 2020
  47. S. Ramesh et al., “Sintering properties of hydroxyapatite powders prepared using different methods,” Ceram. Int., vol. 39, no. 1, pp. 111–119, 2013
  48. A. Karimzadeh, M. R. Ayatollahi, A. R. Bushroa, and M. K. Herliansyah, “Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments,” Ceram. Int., vol. 40, no. 7 PART A, pp. 9159–9164, 2014
  49. M. Z. A. Khiri et al., “Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources,” Results Phys., vol. 12, no. December 2018, pp. 638–644, 2019
  50. M. S. Islam and M. Todo, “Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering,” Mater. Lett., vol. 173, pp. 231–234, 2016
  51. M. J. Mirzaali et al., “Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly,” Bone, vol. 93, pp. 196–211, 2016

Last update:

No citation recorded.

Last update:

No citation recorded.