skip to main content

A Shear Wall Design Study in an 8-Story Building

1Architecture Departement, Universitas Sriwijaya, Indonesia

2Engineer Profession Education, Universitas Kristen Petra, Indonesia

Open Access Copyright 2025 Journal of Architectural Design and Urbanism under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Indonesia is an earthquake-prone region. These natural disasters have caused buildings to collapse and claimed many lives, highlighting the need for earthquake-resistant design. Faculty of Engineering (FE) of Universitas Sriwijaya plan to build an earthquake-resistant 8-story building functioning as classrooms and office. The problem is how to determine the appropriate structural system between SMRF alone or a combined SMRF-SRCSW system and how to determine the optimal position of the shear wall without disturbing the existing layout in the FE Tower.

This research method employed a simulation experiment using six models of FE Tower. The Model was analyzed using software to obtain fundamental vibration period, mode shape, soft story check, torsional irregularity check, and the concrete structure design analysis.

Software analysis results indicate that the FE Tower exhibits both vertical and horizontal geometric irregularities, necessitating dilatation for simplification. The structural system used in this design combines SMRF and SRCSW, and the optimal position of the shear wall is positioned on the outer wall and corner of the building.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Similarity Index
Subject
Type Other
  Download (2MB)    Indexing metadata
Keywords: shear wall; vibration period; mode shape; soft story; torsion

Article Metrics:

  1. Andalas, G., & Riakara Husni, H. (2016). Analisis Layout Shearwall Terhadap Perilaku Struktur Gedung. Jrsdd, 1(1), 2303–2314
  2. Arum, S., Supriyadi, A., & Budi, A. S. (2015). KINERJA STRUKTUR GEDUNG TINGGI DENGAN PEMODELAN DINDING GESER SEBAGAI CORE WALL (STUDI KASUS: GEDUNG MATARAM CITY). Matriks Teknik Sipil, 3(2)
  3. Banerjee, R., & Srivastava, J. B. (2020). Defining Optimum Location of Shear Wall in an Irregular Building by Considering Torsion. International Journal of Engineering and Advanced Technology, 9(4), 2247–2251. https://doi.org/10.35940/ijeat.D6822.049420
  4. Batu, M. L., Dapas, S. O., & Wallah, S. E. (2016). Efisiensi Penggunaan Dinding Geser Untuk Mereduksi Efek Torsi Pada Bangunan Yang Tidak Beraturan. Jurnal Sipil Statik, 4(1)
  5. BSN. (2019). Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung SNI 1726: 2019. In Jakarta: Standar Nasional Indonesia
  6. Budiono, B., & Supriatna, L. (2011). Studi Komparasi Desain Bangunan Tahan Gempa Dengan Menggunakan SNI 03-1726-2002 dan RSNI 03-1726-2012. Penerbit ITB
  7. Chopra, A. K. (2001). Dynamics of Structures: Theory and Applications to Earthquake Engineering,. Prentice Hall Inc
  8. FEMA. (2020). FEMA P-1029, NEHRP Recommended Seismic Provisions for New Buildings and Other Structures
  9. Harmankaya, Z. Y., & Soyluk, A. (2012). Architectural Design of Iregular Buildings in Turkey. International Journal of Civil & Environmental Engineering IJCEE-IJENS, Vol:12(No.01), 42 to 48
  10. Kartiko, A. S., Komara, I., Septiarsilia, Y., Fitria, D. K., Istiono, H., & Pertiwi, D. (2021). Analisis Geometri Bangunan Terhadap Kinerja Seismik Menggunakan Direct Displacement Based Design Method. Jurnal Rekayasa Konstruksi Mekanika Sipil, 4(2), 73–84
  11. Kewalramani, M. A., & Syed, Z. I. (2018). Seismic Analysis of Torsional Irregularity in Multi-Storey Symmetric and Asymmetric Buildings. Eurasian Journal of Analytical Chemistry, 13(3)
  12. Mungase, P. S., Ranjane, V., & Patil, S. (2024). EARTHQUAKE-RESISTANT BUILDINGS. International Research Journal of Modernization in Engineering Technology and Science, 06(03), 421–426
  13. Murty, C. V. R., Goswami, R., Vijayanarayanan, A. R., & Mehta, V. V. (2012). Some Concepts in Earthquake Behaviour of Buildings. Gujarat State Disaster Management Authority Government of Gujarat
  14. Okada, T., Murakami, M., Kabeyasawa, T., Katsumata, H., & Nakano, Y. (Eds.). (2005). Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings. The Japan Building Disaster Prevention Association (JBDPA)
  15. Pesaralanka, V., Challagulla, S. P., Vicencio, F., Babu, P., Hossain, I., Jameel, M., & Uppari, R. K. (2023). Influence of a Soft Story on the Seismic Response of Non-Structural Components. Sustainability, 15, 2860. https://doi.org/10.3390/su15042860
  16. Powale, S. A., & Pathak, N. J. (2019). A comparative study of torsional effect of earthquake on ‘l’and‘s’ shaped high rise buildings. International Journal of Scientific and Technology Research, 8(8), 1355–1359
  17. Putri, G. Z., Resmaindra, M. T., & Fitrah, R. A. (2021). Evaluasi Pengaruh Konfigurasi Geometri Struktur Terhadap Respon Beban Gempa. Jurnal TeKLA, 3(2), 81–87
  18. Satheesh, A. J., Jayalekshmi, B. R., & Venkataramana, K. (2018). Torsional behavior of plan asymmetric shear wall buildings under earthquake loading. Second International Conference on Architecture Materials and Construction Engineering--AMCE 2018, 84–90
  19. Seki, M., & Islam, M. R. (2015). A Proposal on the Simplified Structural Evaluation Method for Existing Reinforced Concrete Buildings in Bangladesh. Global Shelter Cluster. www.sheltercluster.org
  20. Ujwal, M. S., Kumar, G. S., Sathvik, S., & Ramaraju, H. K. (2024). Effect of soft story conditions on the seismic performance of tall concrete structures. Asian Journal of Civil Engineering, 25(4), 3141–3149. https://doi.org/10.1007/s42107-023-00968-9
  21. Ulutas, H. (2024). Investigation of the Causes of Soft-Storey and Weak-Storey Formations in Low-and Mid-Rise RC Buildings in Türkiye. Buildings, 14(5), 1308

Last update:

No citation recorded.

Last update:

No citation recorded.