INKONSISTENSI TEC GIM DARI DATA GNSS SEBAGAI PREKURSOR GEMPABUMI DI WILAYAH MALUKU UTARA TAHUN 2019

*Bambang Sunardi orcid scopus  -  Badan Meteorologi Klimatologi dan Geofisika, Indonesia
Supriyanto Rohadi  -  Pusat Penelitian dan Pengembangan, Badan Meteorologi Klimatologi dan Geofisika, Indonesia
Sulastri Sulastri  -  Pusat Penelitian dan Pengembangan, Badan Meteorologi Klimatologi dan Geofisika, Indonesia
Rahmat Setyo Yuliatmoko  -  Pusat Penelitian dan Pengembangan, Badan Meteorologi Klimatologi dan Geofisika, Indonesia
Received: 15 Oct 2020; Published: 4 Dec 2020.
View
Open Access
Citation Format:
Abstract
Currently, the GNSS has grown rapidly and is widely applied for commercial and research purposes, one of which is an earthquake precursor. Precursor detection of major earthquakes using TEC in the ionosphere has recently become a promising method. This paper focuses on investigating TEC inconsistencies before major earthquakes in the North Maluku region during 2019. Earthquake data refers to the U.S. Geological Survey, while the TEC data comes from GIM which comes from international GNSS. TEC anomaly was observed by applying the TEC correlation method near the epicenter of the earthquake to obtain the TEC inconsistency index. The TEC anomaly classification is decided when the inconsistency index is outside a defined threshold. The Dst index in the same time frame is used to analyze TEC inconsistencies due to geomagnetic storms. The results of research on the January 7, 2019 Mw 6.6 earthquake, the July, 7 2019 Mw 6.9 earthquake, the July 14, 2019 Mw 7.2 earthquake, and the November 14, 2019 Mw7.1 earthquake showed TEC inconsistency 29 to 1 day before the mainshock. Referring to these results, investigations of TEC inconsistencies prior to the major earthquake can be continuously developed until they reach the expected success rate

Article Metrics:

  1. Asnawi, Ekawati, S., Prabowo, D. U., 2012. Variasi Total Electron Content Ionosfer Pada Awal Peningkatan Aktivitas Matahari Siklus Ke 24, Majalah Sains dan Teknologi Dirgantara, Vol. 7, No. 1, 1-10
  2. Chetia, T., Sharma, G., Dey, Ch., and Raju,P. L. N., 2020. Multi-Parametric Approach for Earthquake Precursor Detection in Assam Valley (Eastern Himalaya, India) using Satellite and Ground Observation Data. Geotectonics, Vol. 54 (1), 83–96. https://doi.org/10.1134/S0016852120010045
  3. Dimitar, O., Pullinets, S., Alexey, R. A., Konstantin, T., Dimitri, D., Menas, K., Patrick, T, 2011. Atmosphere-Ionosphere Response to The M9 Tohoku Earthquake Revealed by Multi Instrument Space-Borne and Ground Observations: Preliminary Results, Earthquake Science, 24, 557–564. https://doi.org/10.1007/s11589-011-0817-z
  4. Dogan, U., Ergintav, S., Skone, S., Arslan, N., Oz, D., 2011. Monitoring of The Ionosphere TEC Variations During The 17th August 1999 Izmit Earthquake Using GPS Data, Earth Planets Space, 63. 1183-1192. https://doi.org/10.5047/eps.2011.07.020
  5. Gonzales, W. D., Tsurutani, B. T., Clua de Gonzales, A. L., 1999. Interplanetary Origin of Magnetic Storms, Space Sci. Rev., 88
  6. Gregorczyk, A. K., Wielgosz, P., and Borkowski, A., 2017. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation, Remote Sens, 9 (12), 1221. https://doi.org/10.3390/rs9121221
  7. Heki, K., 2011. Ionospheric Electron Enhancement Preceding The 2011 Tohoku‐Oki Earthquake, Geophysical Research Letters, 38 (17312), 1-5. https://doi.org/10.1029/2011GL047908
  8. Heki, K., and Enomoto, Y., 2015. Mw Dependence of The Preseismic Ionospheric Electron Enhancements, Journal of Geophysical Research: Space Physics, 120 (8), 7006-7020. https://doi.org/10.1002/2015JA021353
  9. Jin, S., Jin, R., Li, J. H., 2014. Pattern and Evolution of Seismo-Ionospheric Disturbances Following The 2011 Tohoku Earthquakes from GPS Observations, Journal of Geophysical Research: Space Physics, 119 (9),7914–7927, https://doi.org/10.1002/2014JA019825
  10. Kamogawa, M., 2006. Preseismic Lithosphere-Atmosphere-Ionosfer Coupling, EOS Trans. American Geophysic Union, Vol. 87 (40), 417-424
  11. Kim, V. P., Hegai, V. V., 1999. A Possible Presage of Strong Earthquakes In The Night-Time Mid-Latitude F2 Region Ionosphere, Atmospheric And Ionospheric Electromagnetic Phenomena Associated With Earthquakes, Tokyo: Terra Scientific Publishing Company
  12. Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., and Yu, S. B., 2004. Pre-Earthquake Ionospheric Anomalies Registered By Continuous GPS TEC Measurements. Annales Geophysicae, Vol. 22 (5), 1585-1593. https://doi.org/10.5194/angeo-22-1585-2004
  13. Liu, J. Y., Chen, C. H., Chen, Y. I., Yang, W. H., Oyama, K. I., and Kuo, K. W., 2010. A Statistical Study of Ionospheric Earthquake Precursors Monitored by Using Equatorial Ionization Anomaly of GPS TEC In Taiwan During 2001–2007, J. Asian. Earth. Sci., Vol. 39 (2), 76-80. https://doi.org/10.1016/j.jseaes.2010.02.012
  14. Liu, J. Y., Le, H., Chen, Y. I., Chen, C. H., Liu, L., Wan, W., Su, Y. Z., Sun Y. Y., Lin, C. H., Chen M. Q., 2011. Observations and Simulations of Seismoionospheric GPS Total Electron Content Anomalies Before The 12 January 2010 M7 Haiti Earthquake, Journal of Geophysical Research, 116, A04302, 1-9. https://doi.org/10.1029/2010JA015704
  15. Muslim, B., 2015. Pengujian Teknik Korelasi Untuk Deteksi Pengaruh Aktivitas Gempa Bumi Besar Pada Ionosfer, Jurnal Sains Dirgantara, Vol 12, No 2
  16. Pulinets, S. A., Boyarchuk, K. A., Hegai, V. V., Kim, V. P., Lomonosov, A. M., 2000. Quasielectrostatic model of atmospherethermosphere-ionosphere coupling, Adv Space Res, Vol. 26 (8), 1209-1218. https://doi.org/10.1016/S0273-1177(99)01223-5
  17. Pulinets, S. A., 1998. Strong Earthquakes Prediction Possibility With The Help Of Topside Sounding From Satellites, Adv. Space. Res, 21(3), 455–458. https://doi.org/10.1016/S0273-1177(97)00880-6
  18. Pulinets, S., 2004. Ionospheric Precursors of Earthquakes; Recent Advances in Theory and Practical Applications, Terrestrial Atmospheric and Oceanic Sciences, 15(3), 413-436. DOI: 10.3319/TAO.2004.15.3.413(EP)
  19. Rohadi, S., Sakya, A. E., Muslim, B., Sunardi, B., Sulastri, Sepriando, A., 2017. Py-Ionoquake: Sistem Deteksi Anomali Total Electron Content (TEC) Untuk Studi Prekursor Gempa Bumi, Prosising SNSA 2016, Bandung, 22 November 2016
  20. Schaer, S., 1999, Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Berne, Bern, Switzerland
  21. Sharma, G., Mohanty, S., Champatiray, P. K., Singh, M. S., Sarma, K., and Raju, P. L. N, 2018. Total Electron Content and Epicentral Distance of 2015 Mw 7.8 Nepal Earthquake Revealed by Continuous Observations Data, Current Science, 115(1), 27-29
  22. Sharma, G., Champatiray, P. K.., and Kannaujiya, S., 2019. Ionospheric Total Electron Content for Earthquake Precursor Detection. Book Chapter in Remote Sensing of Northwest Himalayan Ecosystems, Springer Nature, Singapore, 57-66
  23. Sharmaa, G., Saikia, P., Walia, D., Banerjee, P., Rajua, P.L.N, 2020. TEC Anomalies Assessment for Earthquakes Precursors in North-Eastern India and Adjoining Region Using GPS Data Acquired During 2012–2018, Quaternary International. Available online 22 July 2020. https://doi.org/10.1016/j.quaint.2020.07.009
  24. Shi, K., Liu, X., Guo, J., Liu, L., You, X., Wang, F., 2019. Pre-Earthquake and Coseismic Ionosphere Disturbances of the Mw 6.6 Lushan Earthquake on 20 April 2013 Monitored by CMONOC, Atmosphere, 10 (4), 216. https://doi.org/10.3390/atmos10040216
  25. Subakti, H., Puspito, N. T., Widarto, D. S., 2008. Analisis Variasi GPS–TEC Yang Berhubungan Dengan Gempabumi Besar Di Sumatera, Jurnal Meteorologi dan Geofisika, Vol. 9 (1), 11-23. http://dx.doi.org/10.31172/jmg.v9i1.18
  26. Sunardi, B., Muslim, B., Pakpahan, S., 2015. Anomali Total Electron Content (TEC) Sebelum Gempabumi Kuat di Indonesia Tahun 2014, Prosiding Seminar Nasional Fisika 2015, 378-384
  27. Sunardi, B., dan Sulastri, 2016. Pemantauan Anomali Total Electron Content (TEC) Berkaitan Dengan Kejadian Gempabumi di Sekitar Wilayah Jawa Tahun 2015, Spektra: Jurnal Fisika dan Aplikasinya, Vol 1, No. 2, 95-102. http://doi.org/10.21009/SPEKTRA
  28. Sunardi, B., Muslim, B., Sakya, A. E., Rohadi, S., Sulastri, Murjaya, J., 2018. Ionospheric Earthquake Effects Detection Based on Total Electron Content (TEC) GPS Correlation, IOP Conference Series: Earth and Environmental Science, Volume 132. Doi :10.1088/1755-1315/132/1/012014
  29. Tariq, M. A., Shah, M., Pajares, M. H., Iqbal, T., 2019. Pre-Earthquake Ionospheric Anomalies Before Three Major Earthquakes By GPS-TEC and GIM-TEC Data During 2015–2017, Advances in Space Research, Vol. 63 (7), 2088-2099. https://doi.org/10.1016/j.asr.2018.12.028
  30. Ulukavak, M., and Yalcinkaya, M., 2017. Precursor Analysis of Ionospheric GPS-TEC Variations Before The 2010 M7.2 Baja California Earthquake, Geomatics, Natural Hazards and Risk, Vol. 8 (2), 295-308. https://doi.org/10.1080/19475705.2016.1208684
  31. Yildirim, O., Inyurt, S., Mekik, C., 2016. Review of Variations In Mw< 7 Earthquake Motions On Position And TEC (Mw= 6.5 Aegean Sea Earthquake Sample. Natural Hazards and Earth System Sciences, 16 (2), 543-557. https://doi.org/10.5194/nhess-16-543-2016

Last update: 2021-05-04 21:34:28

No citation recorded.

Last update: 2021-05-04 21:34:28

No citation recorded.