skip to main content

Analysis of Building Density Using Deep Learning Model Semantic Segmentation

Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Received: 1 Jun 2025; Accepted: 26 Nov 2025; Available online: 4 Dec 2026; Published: 16 Dec 2025.

Citation Format:
Abstract

Densely populated settlements are one of the urban problems with building density that requires special attention. This research aims to detect and analyze the spatial distribution of building density, especially in detecting building density in residential areas using the Semantic Segmentation deep learning model method with a research dataset sourced from the entire DKI Jakarta Province area. The analysis was conducted using typology criteria in the form of building density levels based on PERMEN PUPR No. 14 of 2018 concerning the Prevention and Improvement of the Quality of Slums and Slum Settlements, which was processed through the Kaggle Notebook and Google Colaboratory platforms using the Python programming language and based on the U-Net architecture. The segmentation results show that using the U-Net architecture is capable of classifying image pixels with an accuracy of 70% in distinguishing between dense and Sparse buildings, which indicates fairly good accuracy performance. The output produced in this final project research is a web interface for detecting dense and Sparse buildings that can be used as a tool to aid in decision-making for regional planning. This research shows that the Semantic Segmentation deep learning model approach can be an efficient and objective solution in satellite image-based spatial analysis.

 

Keywords:  Deep Learning, Building Density, Semantic Segmentation       

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  View (3MB)    Indexing metadata

Article Metrics:

  1. Bolay, J. (2006). Slums and Urban Development: Questions on Society and Globalisation. Swiss: The European Journal of Development Research
  2. Chollet, F. (2021). Deep Learning with Phyton. New York City: Manning Publications Co
  3. Ciresan, D., Giusti, A., Gambardella, L.M., & Schmidhuber, J. (2012). Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. NIPS, 2852-2860
  4. Cristina, & Andreanus, J. (2018). Aplikasi Sistem Informasi Geografis Berbasis Web Pemetaan Lokasi Tempat Makan Vegetarian di Kota Batam. Jurnal Telematika, Vol. 13 No. 1, Institut Teknologi Harapan Bangsa Bandung, 55-56
  5. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., & Zisserman, A. (2010). The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88 (2), 303-338
  6. Herold. M., Joseph, S., & Clarke, K. (2002). The Use of Remote Sensing and Lanscape Metrics to Describe Structures and Changes in Urban Land Uses. Environment and Planning A, 1443-1458
  7. Hicks, S., Strümke, I., Thambawita, V., Hammou, M., Riegler, M.A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 2
  8. Kohli. D., Sliuzas, R., & Stein, A. (2016). Urban Slum Detection Using Texture and Spatial. Journal of Spatial Science, 405-426
  9. Liu. H., Huang, X., Wen, D., & Li, J. (2017). The Use of Landscape Metrics and Transfer Learning to Explore Urban Villages in China. Remote Sensing MDPI, 1-23
  10. McGarigal, K., & Marks, B. (1995). FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. USDA Forest Service General Technical Report PNW-351, 110-119
  11. Menteri PUPR RI. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia No.14/PRT/M/2018 Tentang Pencegahan dan Peningkatan Kualitas Terhadap Perumahan Kumuh dan Permukiman Kumuh. Jakarta: Sekretariat Negara. Menteri PUPR RI. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia No.14/PRT/M/2018 Tentang Pencegahan dan Peningkatan Kualitas Terhadap Perumahan Kumuh dan Permukiman Kumuh Pasal 25:1. Jakarta: Sekretariat Negara
  12. Menteri PUPR RI. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia No.14/PRT/M/2018 Tentang Pencegahan dan Peningkatan Kualitas Terhadap Perumahan Kumuh dan Permukiman Kumuh Pasal 26:1. Jakarta: Sekretariat Negara
  13. Menteri PUPR RI. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia No.14/PRT/M/2018 Tentang Pola Penanganan Perumahan dan Permukiman Kumuh Pasal 44:4. Jakarta: Sekretariat Negara
  14. Menteri PUPR RI. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia No.14/PRT/M/2018 Tentang Pola Penanganan Terhadap Perumahan Kumuh dan Permukiman Kumuh Pasal 36:2. Jakarta: Sekretariat Negara
  15. Mugiraneza. T., Hafner, S., Haas, J., & Ban, Y. (2022). Monitoring Urbanization and Enviromental Impact in Kigali, Rwanda Using Sentinel-2 MSI Data and Ecosystem Service Bundles. International Journal of Applied Earth Observations and Geoinformation, 1-16
  16. Rahman, M., Alamsah, D., Darmawidjaja, M.I., & Nurma, I. (2017). Klasifikasi untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN). J. Inform, 11 (1), 36
  17. Raj, A., & Mitra, A. (2024). Deep Learning for Slum Mapping in Remote Sensing Images: A Meta-analysis and Review. arXiv, 2-17
  18. Rohit, S. (2019). Mapping and Monitoring Slum Growth Using Deep Learning. Mumbai: Esri R&D Center India
  19. Verma, D., Jana, A., & Ramamritham, K. (2019). Transfer Learning Approach to Map Urban Slums Using High and Medium Resolution Satellite Imagery. ELSEVIER, 3-11
  20. Williams, T., Wei, T., & Zhu, X. (2019). Mapping Urban Slum Settlements Using Very High-Resolution Imagery and Land Boundary Data. IEEE Journal, 2-10
  21. Wurm, M., Stark, T., Zhu, X.X., & Weigand, M. (2019). Semantic Segmentation of Slums in Satellite Images Using Transfer Learning on Fully Convolutional Neural Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 59-69

Last update:

No citation recorded.

Last update:

No citation recorded.