skip to main content

The Equivalence Problems Produced by Machine Translation on A Literary Text: A Study on The Indonesian Translation of Harry Potter: The Order of Phoenix

*Todo F. B. Sibuea orcid  -  Program Studi Sastra Inggris, Universitas Dian Nusantara. JI Tanjung Duren Barat II No 1 Grogol Jakarta Barat., Indonesia
Wahyu Budi  -  Program Studi Sastra Inggris, Universitas Dian Nusantara. JI Tanjung Duren Barat II No 1 Grogol Jakarta Barat., Indonesia
Kenny Jonathan orcid  -  Program Studi Sastra Inggris, Universitas Dian Nusantara. JI Tanjung Duren Barat II No 1 Grogol Jakarta Barat., Indonesia

Citation Format:
Abstract

Google Translate (GT) is a machine translator (MT) this is powered by neural machine technology (NMT) which can produce generally fluent textual translation in more than 100 languages with 60% accuracy. Studies have been done to measure GT ability in translating texts and the quality of its translation products. The results showed that GT’s products are generally satisfying but they have inadequacies at some level of translation aspects. This study aims at finding the problems of equivalence that resulted from the process translating a Harry Potter novel, a literary work that is rich with cultural words and complex sentences, using GT from the English language into the Indonesian language. Using a descriptive qualitative method, the current study examines the problem of equivalence based on Mona Baker’s theory to categorize the translation errors found in the GT output text. This study showed that literary texts are still problematic for GT in terms of words that two languages do not share and sentences that contain several points of view. This paper suggest that GT has to update its database of Indonesian lexicons and any MT output has to go post-editing process in order to ensure its readability and naturalness to its target readers. The implication of this study emphasizes the need to concentrate on translation training programs in the post-editing work.

Fulltext View|Download
Keywords: machine translation, Google Translate, Harry Potter, translation, literary translation
Funding: Universitas Dian Nusantara

Article Metrics:

  1. Hutchins, J.W. “Machine translation: A brief history” in Concise history of language sciences: from Sumerians to the cognitivists, E.F.K. Koerner and R.E. Asher, Eds. Oxford: Pergamon Press, 1995, pp: 431-445. Available: https://doi.org/10.1016/B978-0-08-042580-1.50066-0
  2. IBM. (2022). Pioneering machine-aided translation [Online]. Available: https://www.ibm.com/ibm/history/ibm100/us/en/icons/translation/
  3. Papachimonas, I. (2022) “How computers translate human language” [Online]. Available: https://ed.ted.com/lessons/how-computers-translate-human-language-ioannis-papachimonas#digdeeper
  4. Yvon, F. (2022, Aug 30) Machine Translation Oxford Bibliographies. [Online]. Available: https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0170.xml
  5. Hutchins, J. (2014) “The history of machine translation in a nutshell” Aclanthology. [Online]. Available: https://aclanthology.org/www.mt-archive.info/10/Hutchins-2014.pdf
  6. Stein, D. “Machine translation: Past, present, and future” in Language Technologies for a multilingual Europe: TC3 III, G. Rehm, F. Sasaki, D. Stein, and A. Witts, Eds. Eds. Berlin: Language Science Press, 2016, pp: 5-17 [Online]. Available: https://langsci-press.org/catalog/book/106
  7. Moorkens, J. “The translator, an endangered species?” UNESCO Courier, 2023 [Online] . Available: https://courier.unesco.org/en/articles/translator-endangered-species
  8. Widiastuti, N. M. A. & Rahayuni, N. K. S. “Machine Translation: Source-Oriented and Target-Oriented Approaches”. ELS Journal of Interdisciplinary Studies in Humanities 5(4), pp: 677-685, 2022. [Online]. Available: https://doi.org/10.34050/elsjish.v5i4.24015
  9. Quoc V. Le & Schuster, M. “A neural network for machine translation, at production scale,” Google Research, Sep 27, 2016. [Online]. Available: https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
  10. Microsoft. “Machine translation?” Business, 2022. [Online]. Available: https://www.microsoft.com/en-us/translator/business/machine-translation/
  11. Saksono, M. B., Anindita, A., & Setiajid, H. H. “The performance of Google Translate in translating three Chatolic fundamental prayers.” Konferensi Linguistik Tahunan Atma Jaya 20, pp: 212-216, 2022. Jakarta. Available: https://doi.org/10.25170/kolita.20.3797
  12. Tirtayasa, C. T. and Setiajid, H. “Google’s translate quality in translating an English literary text into Indonesian performed in 2017 and 2019: A diachronic study,” Konferensi Linguistik Tahunan Atma Jaya 18, Jakarta, Indonesia, Sep 16-18, 2020. [Online]. Available: http://repository.usd.ac.id/id/eprint/38640
  13. Amilia, I. & Yuwono, D. E. “A study of the translation of Google Translate”. Lingua 16(2), pp: 1-21, 2020. [Online]. Available: http://dx.doi.org/10.35962/lingua.v16i2.50
  14. Sajarwa, M. Y., Rohmah, R. N., & Bellat, C. E. M. “The Translation of Pronouns and Repetitions in Indonesian Children’s Story ‘Petualangan Si Kancil’ into French Using Google Translate” Eralingua 6(1), pp: 67-81, 2022. [Online]. Available: https://doi.org/10.26858/eralingua.v6i1.23411
  15. Putra, I P. A. “The translation process of machine translation for cultural terms on Balinese folktales” Linguistika 29(1), pp: 24-33, 2022. [Online]. Available: https://doi.org/10.24843/ling.2022.v29.i01.p04
  16. Winiharti, M., Syihabuddin, & Sudana, D. “On google translate: Students’ and lecturers’ perception of the English translation of Indonesian scholarly articles,” Lingua Cultura, 15(2), 207-214, 2021. [Online]. Available: https://doi.org/10.21512/lc.v15i2.7335
  17. Baker, M. In other words: A coursebook in on translation (3rd Ed.). New York: Routledge, 2018
  18. Toral, A. & Way, A. “What level of quality can neural machine translation attain on literary text?” In Moorkens, J., Castilo, S., Gaspari, F., Doherty, S. (Eds). Translation quality assessment. Machine translation: Technologies and applications. Vol. 1, 2018. Springer. [Online]. Available: https://doi.org/10.1007/978-3-319-91241-7_12
  19. Cullen, A. “How artificial intelligence works in literary translation”, Goethe Institute, September 2020 [Online]. Available: https://www.goethe.de/ins/gb/en/kul/lue/ail/21967556.html
  20. Vox (2016, Oct 18). Harry Potter and the translator’s nightmare, 18 Oct, 2016. [Online]. [Video]. YouTube. Available : https://www.youtube.com/watch?v=UdbOhvjIJxI
  21. Budi, W. “Analysis of category shifts translation: case study of Harry Potter and The Sorcerer's Stone novel translation from English to Indonesian” Journal of Economics and Business Letters 2(2), pp: 20-24, 2022. [Online]. Available: https://doi.org/10.55942/jebl.v2i2.156
  22. Rowling, J.K. Harry Potter and the order of the phoenix. England: Bloomsbury, 2003
  23. Turovsky, B. “Ten years of Google translate,” The Keyword, Apr 28, 2016. [Online]. Available: https://blog.google/products/translate/ten-years-of-google-translate/
  24. Farkas, A. (2019). LF Aligner (Version 4.21) [Computer Software]
  25. Štromajerová, A., Baisa, V., & Blahuš, M. “Between comparable and parallel: English-czech corpus from wikipedia,” RASLAN 2016 Recent Advances in Slavonic Natural Language Processing, 3, 2016. [Online]. Available: https://nlp.fi.muni.cz/raslan/raslan16.pdf#page=11
  26. Doval, I. “POS-tagging a bilingual parallel corpus: methods and challenges,” Research in Corpus Linguistics, pp: 35-46, 2017. [Online]. Available: https://doi.org/10.32714/ricl.05.03
  27. Barkarson, S., & Steingrímsson, S. “Compiling and filtering ParIce: an English-icelandic parallel corpus”: Proceedings of the 22nd Nordic Conference on Computational Linguistics, 2019. Pp: 140-145. [Online]. Available: https://aclanthology.org/W19-6115.pdf
  28. Britannica, T. Editors of Encyclopaedia. phoenix. Encyclopedia Britannica. January 6, 2023. [Online]. Available: https://www.britannica.com/topic/phoenix-mythological-bird
  29. Badan Pengembangan dan Pembinaan Bahasa. Kamus besar bahasa Indonesia daring. Retrieved Nov 1, 2022, [Online. Available: https://kbbi.kemdikbud.go.id/Cari/Index
  30. Oxford University Press. New Oxford American dictionary (2.3.0) [Computer Software]. Apple, 2021. [Online]. Available: https://apps.apple.com/us/app/new-oxford-american-dictionary/id1066450412?mt=12
  31. Law Insider. Found guilty definition. Nov 1, 2022. [Online]. Available: https://www.lawinsider.com/dictionary/found-guilty
  32. Pratiwi, B. I. “Hermeneutics Perspective: Number and Personal Grammatical Equivalence of Google Translate”. Eralingua 5(1), pp: 152-163, 2021. [Online]. Available: https://doi.org/10.26858/eralingua.v5i1.16695
  33. Sutrisno, A. “The Accuracy and Shortcomings of Google Translate Translating English Sentences to Indonesia,” Education Quarterly Reviews 3(4), pp: 555-568, 2020. [Online]. Available: DOI: 10.31014/aior.1993.03.04.161
  34. Latifah, N. W., Baharuddin, B., & Udin, U. “An Analysis of Translation Shift in Novel Shine by Jessica Jung and Its Translation,” Culturalistics: Journal of Cultural, Literary, and Linguistic Studies, 6(2), pp: 11-17, 2022. [Online]. Available: https://doi.org/10.14710/culturalistics.v6i2.14881
  35. Sumiati, Baharuddin, & Saputra, A. “The analysis of google translate accuracy in translating procedural and narrative text,” Journal of English Education Forum 2(1), pp: 7-11, 2022. [Online]. Available: https://doi.org/10.29303/j.v2i1.270
  36. Pym, A. “Translation skill-sets in a machine-translation age”. Meta 58(3), pp: 487-503, 2013. [Online]. Available: https://doi.org/10.7202/1025047ar
  37. Zaretskaya, A. “The use of machine translation among professional translators”. Paper presented at EXPERT Scientific and Technological Workshop. Malaga, Spain. [Online]. Available: https://www.researchgate.net/publication/283667234_The_Use_of_Machine_Translation_among_Professional_Translators
  38. Ordorica, S. “Why technology will not replace professional translators.” Forbes, Oct 26, 2020. [Online]. Available: https://www.forbes.com/sites/forbesbusinesscouncil/2020/10/26/why-technology-will-not-replace-professional-translators/?sh=5b79fba076a8
  39. Lim, S. N. “2023 Translation industry trends and stats.” Redokun. [Online]. Available: https://redokun.com/blog/translation-statistics
  40. Harto, S., Hamied, F. A., Musthafa, B., & Setyarini, S. “Exploring undergraduate experience in dealing with post-editing of machine translation”. Indonesian Journal of Applied Linguistics 11(3), pp: 696-707, 2022. [Online]. Available: https://doi.org/10.17509/ijal.v11i3.42825

Last update:

No citation recorded.

Last update:

No citation recorded.