skip to main content

Peran Teknologi Nanopartikel Pada Budidaya, Produksi, dan Pemanfaatan Senyawa Tanaman Vanili (Vanilla planifolia)

Fakultas Biologi, Universitas Kristen Satya Wacana, Jl. Diponegoro 52-60 Salatiga, Indonesia

Open Access Copyright 2025 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Aplikasi nanoteknologi, di dunia pertanian maupun kesehatan, kini semakin marak untuk dikembangkan. Vanilla planifolia atau tanaman vanili, yang merupakan penghasil senyawa vanilin, memiliki potensi pengaplikasian nanoteknologi. Peningkatan pertumbuhan tanaman dengan menggunakan teknologi nanofertilizer dan peningkatan senyawa metabolit sekunder vanilin dengan menggunakan teknologi nanoelisitor dapat memberikan hasil maksimal bagi panen tanaman vanili. Disisi lain, vanilin yang merupakan senyawa aktif pada tanaman vanili juga memiliki khasiat sebagai obat dan bahkan dapat dimanfaatkan dalam bidang kecantikan. Penelitian ini bertujuan untuk menggali peran nanoteknologi yang memiliki potensi pengaplikasiannya pada tanaman vanili, baik pada budidaya tanaman maupun pada pemanfaatan senyawa vanilin dalam bidang kesehatan dan kecantikan. Dari hasil yang didapatkan, nanoteknologi dalam bentuk nanofertilizer memiliki potensi besar dalam meningkatkan pertumbuhan tanaman vanili serta dapat membantu tanaman dalam menghadapi cekaman biotik dan abiotik yang mengganggu pertumbuhannya. Nanoteknologi juga dapat diaplikasikan pada senyawa vanilin, dimana vanilin dalam bentuk nanopartikel berperan sebagai anti-inflamasi, anti-kanker, anti-oksidan, serta berperan sebagai senyawa pengikat alami yang mendukung penyembuhan luka. Kemampuan tersebut dapat dimanfaatkan sebagai nanoteknologi dalam bidang kesehatan serta bidang kecantikan

  

Applications of nanotechnology, in the agriculture and health sector, are now increasingly being developed. Vanilla planifolia or vanilla plants, which are producers of vanillin compounds, have the potential for nanotechnology applications. Increasing plant growth using nanofertilizer technology and increasing vanillin secondary metabolite compounds using nanoelicitor technology can provide maximum yield for vanilla plant. On the other hand, vanillin, which is the active compound in the vanilla plant, also has medicinal properties and can even be used in the field of beauty. This research aims to explore the role of nanotechnology that has the potential for application in vanilla plants, both in plant cultivation and in the use of vanillin compounds in the field of health and beauty. From the results obtained, nanotechnology in the form of nanofertilizer has great potential in increasing the growth of vanilla plants and can help plants in dealing with biotic and abiotic stress that interferes with their growth. Nanotechnology can also be applied to vanillin compounds, where vanillin in the form of nanoparticles acts as an anti-inflammatory, anti-cancer, anti-oxidant, and also acts as a natural binding compound that supports wound healing. This ability can be used as nanotechnology in the health and beauty fields

 

Fulltext View|Download
Keywords: Vanilla planifolia, senyawa vanilin, nanopartikel, nutraseutikal, kosmeseutikal

Article Metrics:

  1. Abdel-Aziz, H., Hasaneen, M. N., & Omar, A. (2018). Effect of Foliar Application of Nano Chitosan NPK
  2. Fertilizer on the Chemical Composition of Wheat Grains. Egyptian Journal of Botany, 58(1), 87-95
  3. Ahmed, B., Khan, M. S., & Musarrat, J. (2018). Toxicity Assessment of Metal Oxide Nano-Pollutants on Tomato (Solanum lycopersicon): A Study on Growth Dynamics and Plant Cell Death. Environmental Pollution, 240, 802-816
  4. Alharby, H. F., Metwali, E.M., Fuller, M. P., Aldhebiani, A. Y. (2016). Impact of Application of Zinc Oxide Nanoparticles on Callus Induction, Plant Regeneration, Element Content and Antioxidant Enzyme Activity in Tomato (Solanum lycopersicum Mill.) Under Salt Stress, Arch. Biol. Sci. 68, 723–735
  5. Amer, A. (2018). Biotechnology Approaches for In Vitro Production of Flavonoids. The Journal of Microbiology, Biotechnology and Food Sciences, 7(5), 457
  6. Arya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2021). Vanilin: A Review on The Therapeutic Prospects of a Popular Flavouring Molecule. Advances in traditional medicine, 1-17
  7. Astuti, Y., Siagian, R., Daniati, C., Isnaini, N. (2021). Pengenalan dan Pengendalian OTP Pada Tanaman Vanili. Jakarta: Direktorat Perlindungan Perkebunan Direktorat Jenderal Perkebunan Kementerian Pertanian
  8. Awasthi, S., & Saraswathi, N. T. (2016). Vanilin Restrains Non-Enzymatic Glycation and Aggregation of Albumin by Chemical Chaperone Like Function. International Journal of Biological Macromolecules, 87, 1-6
  9. Banerjee, G., Chattopadhyay, P. (2018). Vanilin Biotechnology: The Perspectives and Future. Journal of the Science of Food and Agriculture, 99(2), 499-506
  10. Bezerra, D. P., Soares, A. K. N., & de Sousa, D. P. (2016). Overview of The Role of Vanilin on Redox Status and Cancer Development. Oxidative Medicine and Cellular Longevity, 2016(1), 9734816
  11. Chen, P., Liu, Y., Li, C., Hua, S., Sun, C., & Huang, L. (2023). Antibacterial Mechanism of Vanilin Against Escherichia coli O157: H7. Heliyon, 9(9)
  12. Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing Catalytic Performance of β-glucosidase Via Immobilization on Metal Ions Chelated Magnetic Nanoparticles. Enzyme and Microbial Technology, 63, 50-57
  13. Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., & Perego, P. (2010). Microbial Production of Biovanilin. Brazilian Journal of Microbiology, 41, 519-530
  14. Coskun, Y., & Kapdan, G. (2024). Silver Nanoparticles (AgNPs) Act as Nanoelicitors in Melissa Officinalis to Enhance the Production of Some Important Phenolic Compounds and Essential Oils. Flavour and Fragrance Journal, 40(2): 278-288
  15. Darajat, N. Z., Chaerunnisa, A. Y., & Abdassah, M. (2022). Kosmeseutikal dengan Zat Aktif dalam Sistem Liposom. Journal of The Indonesian Society of Integrated Chemistry, 14(1), 10-20
  16. Drostkar, E., Talebi, R., & Kanouni, H. (2016). Foliar application of Fe, Zn and NPK Nano-Fertilizers on Seed Yield and Morphological Traits in Chickpea Under Rainfed Condition. Journal of Resources and Ecology, 4(1), 221-8
  17. Gupta, S., & Sharma, B. (2014). Pharmacological Benefits of Agomelatine and Vanilin in Experimental Model of Huntington's disease. Pharmacology Biochemistry and Behavior, 122(2014), 122-135
  18. Haghighi, M., & Pessarakli, M. (2013). Influence of Silicon and Nano-Silicon on Salinity Tolerance of Cherry Tomatoes (Solanum lycopersicum L.) at Early Growth Stage. Scientia Horticulturae, 161(2013), 111-117
  19. Halim, R., Akyol, B., & Güner, A. (2017). In Vitro Regeneration of Vanilla (Vanilla planifolia L.). Journal of Applied Biological Sciences, 11(1), 5-10
  20. Hannemann, A., Cytlak, U. M. C., Gbotosho, O. T., Rees, D. C., Tewari, S., & Gibson, J. S. (2014). Effects of O-Vanilin on K+ Transport of Red Blood Cells From Patients with Sickle Cell Disease. Blood Cells, Molecules, and Diseases, 53(1-2), 21-26
  21. Hariono, M., Abdullah, N., Damodaran, K. V., Kamarulzaman, E. E., Mohamed, N., Hassan, S. S., Wahab, H. A. (2016). Potential New H1N1 Neuraminidase Inhibitors From Ferulic Acid and Vanilin: Molecular Modelling, Synthesis and In Vitro Assay. Scientific Reports, 6(1), 38692
  22. Harismah, K., Fazeli, F., & Zandi, H. (2022). Structural Analyses of Vanilin Derivative Compounds and Their Molecular Docking with MPRO and RDRP Enzymes of COVID-19. Biointerface Research in Applied Chemistry, 12(2), 1660-1669
  23. Hastuti, A., Lestari, T.A., Mardiah. (2021). Pemanfaatan 8 Jenis Rempah di Bidang Kosmetik, Bumbu Masak, Makanan Hingga Fragrance dan Flavor. Jurnal Ilmiah Pangan Halal, 3(1), 9-18
  24. Kamaraj, S., Palanisamy, U. M., Mohamed, M. S,,. Gangasalam, A., Maria, G. A., Kandasamy, R. (2018)
  25. Curcumin drug delivery by vanilin‑ chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci,116, 48–60
  26. Konate, A., Wang, Y., He, X., Adeel, M., Zhang, P., Ma, Y., Zhang, Z. (2018). Comparative Effects of Nano and Bulk Fe3O4 on The Growth of Cucumber (Cucumis sativus). Ecotoxicology and Environmental Safety, 165(2018), 547-554
  27. Lan, X. B., Wang, Q., Yang, J. M., Ma, L., Zhang, W. J., Zheng, P.,Yu, J. Q. (2019). Neuroprotective Effect of Vanilin on Hypoxic-Ischemic Brain Damage in Neonatal Rats. Biomedicine & Pharmacotherapy, 118(2019), 109196
  28. Mudyantini, W., Huda, Y. N., & Pitoyo, A. (2024). Growth of Vanilla (Vanilla planifolia) Roots in Different Internodes of Stem Cuttings with NAA (Naphthaleneacetic Acid) Treatments. Cell Biology and Development, 8(1), 13-21
  29. Moghaddasi, S., Fotovat, A., Khoshgoftarmanesh, A. H., Karimzadeh, F., Khazaei, H. R., & Khorassani, R. (2017). Bioavailability of Coated and Uncoated ZnO Nanoparticles to Cucumber in Soil With or Without Organic Matter. Ecotoxicology and Environmental Safety, 144(2017), 543-551
  30. Narayani, M., & Srivastava, S. (2017). Elicitation: A Stimulation of Stress in In Vitro Plant Cell/Tissue Cultures for Enhancement of Secondary Metabolite Production. Phytochemistry Reviews, 16(2017), 1227-1252
  31. Nasr, S., Varshosaz, J., Hajhashemi, V. (2020). Ortho‑vanilin nanoparticle‑ doped glucan microspheres exacerbate the anti‑arthritic effects of methotrexate in adjuvant‑induced arthritis in rats. Pharmacol Rep, 72(3), 680–691
  32. Oladimeji OH, Idiong ES, Joseph UA. (2021). A Cycloalkanol from Derivatization Studies on Vanilin: Evaluation of Antioxidant Activity of Obtained Derivatives. Journal of Phramaceutical Sciences & Clinical Research, 6(1): 1-7
  33. Patrick, C. A., Webb, J. P., Green, J., Chaudhuri, R. R., Collins, M. O., & Kelly, D. J. (2019). Proteomic Profiling Transcription Factor Modeling, and Genomics of Evolved Tolerant Strains Elucidate Mechanisms of Vanilin Toxicity in Escherichia coli. Msystems, 4(4), 1-29
  34. Raliya, R., Vinod, S., Christian, D., Pratim, B. (2017). Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspective. Journal of Agricultural and Food Chemistry, 66 (26): 6487-6503
  35. Raliya, R., & Tarafdar, J. C. (2013). ZnO Nanoparticle Biosynthesis and It’s Effect on Phosphorous Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research, 2(2013), 48-57
  36. Rezvani, N., Sorooshzadeh, A., & Farhadi, N. (2012). Effect of Nano-Silver on Growth of Saffron in Flooding Stress. International Journal of Agricultural and Biosystems Engineering, 6(1), 11-16
  37. Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of Foliar Application of Zinc Sulfate and Zinc Nanoparticles in Coffee (Coffea arabica L.) Plants. Plant Physiology and Biochemistry, 135(2013), 160-166
  38. Ruhnayat, A. (2003). Bertanam Vanili : Si Emas Hijau nan Wangi. Jakarta: AgroMedia Pustaka
  39. Rusly, M., & Rahman, D. Y. (2023). Perkembangan Penerapan Nanoteknologi pada Bidang Pertanian. Jurnal Penelitian Fisika dan Terapannya (Jupiter), 4(2), 10-14
  40. Sabatini, S.D., Budihastuti, R., Suedy, S.W.A. (2017). Pengaruh Pemberian Pupuk Nanosilika Terhadap Tinggi Tanaman dan Jumlah Anakan Padi Beras Merah (Oryza sativa L.var. indica). Buletin Anatomi dan Fisiologi, 2(2): 128-133
  41. Salau, V. F., Erukainure, O. L., Ibeji, C. U., Olasehinde, T. A., Koorbanally, N. A., & Islam, M. S. (2020). Vanilin and Vanillic Acid Modulate Antioxidant Defense System Via Amelioration of Metabolic Complications Linked to Fe 2+-Induced Brain Tissues Damage. Metabolic Brain Disease, 35(2020), 727-738
  42. Setyaningsih, D., Rusli, M.S., Muliati, N. (2007). Sifat Fisikokimia dan Aroma Ekstrak Vanili. Jurnal Ilmu Pertanian Indonesia, 12(3): 173-181
  43. Shenashen, M., Derbalah, A., Hamza, A., Mohamed, A., El Safty, S. (2017). Antifungal Activity of Fabricated Mesoporous Alumina Nanoparticles Against Root Rot Disease of Tomato Caused by Fusarium oxysporum. Pest Management Science, 73: 1121–1126
  44. Sidek, N., Anuar, N. S. M., Naher, L., & Muâ, K. A. (2018). The Effect of Different Nutrient Media on In Vitro Shoot and Root Proliferation of Vanilla planifolia Jacks. ex Andrews. African Journal of Biotechnology, 17(39), 1241-1246
  45. Solano, M. C. P., Bogdanchikovab, N., Galindo, M. E. (2020). Silver Nanoparticles Affect The Micropropagation Of Vanilla (Vanilla planifolia Jacks. ex Andrews) Agrociencia, 54 (1), 1-13
  46. Spinoso-Castillo, J. L., Chavez-Santoscoy, R. A., Bogdanchikova, N., Pérez-Sato, J. A., Morales-Ramos, V., Bello, J. J. (2017). Antimicrobial and Hormetic Effects of Silver Nanoparticles on In Vitro Regeneration of Vanilla (Vanilla planifolia Jacks. ex Andrews) Using a Temporary Immersion System. Plant Cell, Tissue and Organ Culture (PCTOC), 129(2017), 195-207
  47. Tjitrosoepomo, G. (2012). Taksonomi Tumbuhan (Spermatophyta). Yogyakarta: Gadjah Mada University Press
  48. Vanti, G.L., Nargund, V.B., N, B.K., Vanarchi, R., Kurjogi, M., Mulla, S.I., Tubaki, S., Patil, R.R. (2018). Synthesis of Gossypium Hirsutum-Derived Silver Nanoparticles and Their Antibacterial Efficacy Against Plant Pathogens. Applied Organometallic Chemistry. 33(1): 21-35
  49. Wang, N., Wu, R., Fu, Q., Wang, H., Zhang, Z., Haji, Z., An, Y. (2018). Immobilization of β‐Glucosidase BglC on Decanedioic Acid‐Modified Magnetic Nanoparticles. Chemical Engineering &Technology, 41(10), 1949-1955
  50. Windy, Y.M., Dilla, K.N., Claudia, J., Noval., Hakim, A.R. (2022). Karakterisasi dan Formulasi Nanopartikel Ekstrak Tanaman Bundung (Actinoscirpus grossus) dengan Variasi Konsentrasi Basis Kitosan dan NA-TPP Menggunakan Metode Gelasi Ionik. Jurnal Surya Medika, 8(3): 25-29
  51. Xu, C., Zhan, W., Tang, X., Mo, F., Fu, L., & Lin, B. (2018). Self-Healing Chitosan/Vanilin Hydrogels Based on Schiff Base Bond/Hydrogen Bond Hybrid Linkages. Polymer Testing, 66(2018), 155-163
  52. Yanuar, F., & Widawati, M. (2014). Pemanfaatan Nanoteknologi dalam Pengembangan Pupuk dan Pestisida Organik. Jurnal Kesehatan, 1(1), 53-58
  53. Zainul, L.A.B., Soeparjono, S., Setiawati, T.C. (2022). Aplikasi Pupuk Silika untuk Meningkatkan Ketahanan Tanaman Cabai Rawit (Capsicum annuum L.) terhadap Stres Genangan. Jurnal Agron Indonesia, 50(2), 172-179
  54. Zulfiqar, F., Míriam, N., Muhammad, A., Nudrat, A. A., Sergi, M., (2019). Nanofertilizer Use For Sustainable Agriculture: Advantages and Limitations. Plant Science. 289(2019),1-11

Last update:

No citation recorded.

Last update:

No citation recorded.