skip to main content

Pengaruh Air Kelapa Pada Media MS Terhadap Pertumbuhan Tunas Dari Eksplan Cormus Saffron (Crocus Sativus L.) Secara In vitro

Program Studi Biologi, Fakultas sains dan Mathematika, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang, Semarang, 50275 Indonesia, Indonesia

Open Access Copyright 2026 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Saffron (Crocus sativus L.) merupakan tumbuhan steril dengan kromosom triploid, sehingga perbanyakan secara generatif tidak dapat dilakukan. Metode kultur jaringan menjadi salah satu alternatif untuk membudidayakan saffron. Tujuan penelitian adalah mengkaji pengaruh air kelapa pada media MS terhadap pertumbuhan tunas eksplan cormus Saffron  dan mengetahui konsentrasi air kelapa yang optimum sehingga meningkatan pertumbuhan tunas Saffron. Metode yaitu penanaman eksplan cormus Saffron  ke dalam media MS yang ditambah air kelapa pada konsentrasi 0%, 5%, 10%, 15%, 20%. Penelitian menggunakan rancangan acak lengkap dengan faktor tunggal (konsentrasi air kelapa) dengan 4 ulangan. Data dianalisis dengan ANOVA dilanjutkan dengan uji DMRT. Pertumbuhan eksplan diamati selama 8 minggu. Parameter yang diamati yaitu waktu muncul tunas, akar, dan daun; jumlah tunas, akar, dan daun. Hasil penelitian menunjukkan bahwa penambahan air kelapa tidak menginisiasi pertumbuhan akar, tunas, dan daun cormus saffron. Air kelapa dengan konsentrasi 0% - 20% tidak menstimulasi pertumbuhan akar, tunas, dan daun cormus saffron. Air kelapa belum mampu memecahkan dormansi cormus saffron.


Saffron (Crocus sativus L.) is a sterile plant with triploid chromosomes, making generative propagation unfeasible. Tissue culture offers an alternative method for saffron cultivation. This research aimed to investigate the impact of coconut water in Murashige and Skoog (MS) medium on the growth of saffron corm explant shoots and to identify the optimal coconut water concentration for enhancing saffron shoot growth. The experiment involved planting saffron corm explants in MS medium supplemented with coconut water at concentrations of 0%, 5%, 10%, 15%, and 20%. A completely randomized design with a single factor (coconut water concentration) and four replications was employed. Data were analyzed using ANOVA followed by the Duncan's Multiple Range Test (DMRT). Explant growth was monitored over an 8-week period, with observations focusing on the timing of shoot, root, and leaf emergence, as well as the number of shoots, roots, and leaves. The results indicated that the addition of coconut water did not initiate the growth of saffron corm roots, shoots, or leaves. Coconut water at concentrations ranging from 0% to 20% did not stimulate the growth of saffron corm roots, shoots, or leaves, and it was unable to break the dormancy of saffron corms.

Fulltext
Keywords: hormon alami; kultur jaringan; saffron; triploid

Article Metrics:

  1. Ariyanti, N. K., Erawati, D. N., Sarita, R., & Belinda, S. J. (2021). Analisis Peran Air Kelapa Terhadap Pertumbuhan Eksplan Kultur Vanili (Vanilla planifolia). Peningkatan Produktivitas Pertanian Era Society 5.0 Pasca Pandemi, 89–97. https://doi.org/10.25047/agropross.2021.210
  2. Belfiori, B., Rubini, A., & Riccioni, C. (2021). Diversity of endophytic and pathogenic fungi of saffron (Crocus sativus) plants from cultivation sites in Italy. Diversity, 13(11). https://doi.org/10.3390/d13110535
  3. Dastranj, M., Sepaskhah, A. R., & Kamgar-Haghighi, A. A. (2019). Rainfall and its distribution influences on rain-fed saffron yield and economic analysis. Theoretical and Applied Climatology, 137(3–4), 3139–3147. https://doi.org/10.1007/s00704-019-02804-0
  4. Espinosa-Leal, C. A., Puente-Garza, C. A., & García-Lara, S. (2018). In vitro plant tissue culture: means for production of biological active compounds. In Planta (Vol. 248, Issue 1). Springer Verlag. https://doi.org/10.1007/s00425-018-2910-1
  5. Forde, B. G. (2014). Nitrogen signalling pathways shaping root system architecture: An update. In Current Opinion in Plant Biology (Vol. 21, pp. 30–36). Elsevier Ltd. https://doi.org/10.1016/j.pbi.2014.06.004
  6. Herawati, R., Ganefianti, D. W., & Romeida, A. (2021). Addition of Coconut Water and Banana Extract on MS Media to Stimulate PLB (Protocorm Like Bodies) Regeneration of Dendrobiumgatton sunray. Advances in Biological Sciences Research, 13: 251-258
  7. Kassanuk, T., Selakorn, O., Phasinam, K., & Sutaphan, S. (2021). Effect of Coconut Water on Root Induction of Musa (AA Group) “KLUAI NAM THAI” In Vitro. In PSYCHOLOGY AND EDUCATION (Vol. 58, Issue 1). www.psychologyandeducation.net
  8. Mansotra, R., & Vakhlu, J. (2022). Crocus Sativus Saffron: A 360-Degree Overview. In C. Kole (Ed.), The Saffron Genome. Springer Nature Switzerland
  9. Matloob, F., Gul, Z., & Jamal, Z. (2017). Micropropagation of an important medicinal plant Catharanthus roseus by using coconut water instead of synthetic plant growth regulators. Indian Journal of Research in Pharmacy and Biotechnology, 5(6), 360–365. www.ijrpb.comJournalhomepage: http://www.ijrpb.com
  10. Midaoui, A. El, Ghzaiel, I., Vervandier-Fasseur, D., Ksila, M., Zarrouk, A., Nury, T., Khallouki, F., Hessni, A. El, Ibrahimi, S. O., Latruffe, N., Couture, R., Kharoubi, O., Brahmi, F., Hammami, S., Kouki, O. M., Hammami, M., Ghrairi, T., Vejux, A., & Lizard, G. (2022). Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients, 14(3). https://doi.org/10.3390/nu14030597
  11. Muhammad, K., Gul, Z., Jamal, Z., Ahmed, M., Khan, A., & Khan, Z. (2015). Effect of coconut water from different fruit maturity stages, as natural substitute for synthetic PGR in in vitro potato micropropagation. International Journal of Biosciences, 6, 84-92
  12. Nandariyah, Mahmudah, L. S., Arniputri, R. B., & Sakya, A. T. (2021). The effect of NAA and coconut water combination on garlic (Allium sativum L.) tissue culture. IOP Conference Series: Earth and Environmental Science, 905(1). https://doi.org/10.1088/1755-1315/905/1/012036
  13. Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. In Trends in Plant Science (Vol. 12, Issue 5, pp. 217–223). https://doi.org/10.1016/j.tplants.2007.03.012
  14. Roshanravan, N., & Ghaffari, S. (2022). The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. In Phytotherapy Research (Vol. 36, Issue 1, pp. 98–111). John Wiley and Sons Ltd. https://doi.org/10.1002/ptr.7286
  15. Saeidirad, M.-H. (2020). Mechanization of saffron production. In A. Koocheki & M. Khajeh-Hosseini (Eds.), Saffron: Science, Technology and Health (pp. 187–204). Woodhead Publishing
  16. Salwee, Y., & Nehvi, A. (2014). In Vitro Microcorm Formation In Saffron (Crocus sativus L.). Journal of Cell and Tissue Research, 14(2), 4463–4470
  17. Sharifi, H., Nabipour, Z., & Kakhki, H. R. T. (2021). Evaluation of the effect of compensatory behavior of planting density, mother corm weight and planting depth on vegetative characteristics and yield of saffron (Crocus sativus L.). Saffron Agron Technol, 9(3), 227–248
  18. Shokrpour, M. (2019). Saffron (Crocus sativus L.) breeding: opportunities and challenges. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in Plant Breeding Strategies: Industrial and Food Crops (Vol. 6, pp. 675–706). Springer Nature
  19. Tahiri, A., Mazri, M. A., Karra, Y., Ait Aabd, N., Bouharroud, R., & Mimouni, A. (2023). Propagation of saffron (Crocus sativus L.) through tissue culture: a review. In Journal of Horticultural Science and Biotechnology (Vol. 98, Issue 1, pp. 10–30). Taylor and Francis Ltd. https://doi.org/10.1080/14620316.2022.2078233
  20. Vilcherrez-Atoche, J. A., Rojas-Idrogo, C., Delgado-Paredes, G. E., Pedro, N., Gallo, R., & Xxiii, J. (2020). Cattleya maxima J. Lindley in Culture Medium with Banana Flour and Coconut Water. In International Journal of Plant, Animal and Environmental Sciences (Vol. 10, Issue 4)

Last update:

No citation recorded.

Last update:

No citation recorded.