skip to main content

TRANSMISSION OF SHALLOT PRICE VOLATILITY IN INDONESIA

*Soraya Astia Putri  -  Agribusiness, Faculty of Economics and Management, IPB University, Bogor, West Java, Indonesia, Indonesia
Anna Fariyanti  -  Agribusiness, Faculty of Economics and Management, IPB University, Bogor, West Java, Indonesia, Indonesia
Harmini Harmini  -  Agribusiness, Faculty of Economics and Management, IPB University, Bogor, West Java, Indonesia, Indonesia
Open Access Copyright 2023 Agrisocionomics: Jurnal Sosial Ekonomi Pertanian under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Shallots are one of the most volatile food commodities. The volatility of shallot prices can cause volatility for other commodities, coupled with the existence of shallot distribution channels in various markets, allowing volatility to flow between domestic markets. This research aims to analyze shallot price volatility and the transmission of shallot price volatility. This study uses the monthly price of shallots at the consumer level for the period January 2010 - December 2020. To analyze price volatility using the GARCH method and the transmission of volatility using the VAR method. The analysis results show that the level of volatility in the price of Indonesian shallots in East Java has the highest value, followed by DKI Jakarta, Central Java, and West Java. It was found that there is a two-way transmission of shallot price volatility in Indonesia which tends to fluctuate in the long run. Shallot price volatility in DKI Jakarta contributes to price volatility in other regions. A policy from the government is needed that is focused on stabilizing shallot prices in DKI Jakarta so that it does not spread to other region.

Fulltext View|Download
Keywords: GARCH, shallots, VAR, volatility transmission

Article Metrics:

  1. Amyaz, A. M., Terry L. R. & Shaney, M. 2004. Measuring commodity price volatility and the welfare consequences of eliminating volatility. J Gender, Agric Food Secur. 1(3):1–22
  2. Awartani, B.M.A & Corradi, V. 2005. Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries. Int J Forecast. 21(1):167–183. doi: 10.1016/j.ijforecast.2004.08.003
  3. Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. J Econom. 45(7):95–111. doi: 10.3905/jpm.2019.1.098
  4. BPS. 2014. Development of the Consumer Price Index/Inflation. pp 1-17
  5. BPS. 2019. Central Java Inflation. [accessed 2022 Sep 27]. https://jateng.bps.go.id/news/2019/05/09/224/inflasi-jawa-tengah.html
  6. BPS. 2020a. Consumption Expenditure of the Indonesian Population. In: Expenditure on Consumption of the Indonesian Population. 10th Volume
  7. BPS. 2020b. Horticultural Statistics. pp 23-26
  8. Darma D.C., Pusriadi T. & Permadi Y. 2019. Impact of Commodity Price Increase on Inflation Rate in Indonesia. Management, Accounting and Banking. February 2020
  9. Enders, W. 1995. Applied Econometric Time Series. New York (US): John Wiley & Sons
  10. Engle, R.F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica. 50(4):987. doi: 10.2307/1912773
  11. Gilbert, C.L & Morgan C.W. 2010. Food price volatility. Philos Trans R Soc B Biol Sci. 365(1554):3023–3034. doi: 10.1098/rstb.2010.0139
  12. Karlina, S. L., Achsani N.A. & Sartono B. 2017. Volatility Transmission of the Main Global Stock Return Towards Indonesia. Bull Monet Econ Bank. 20(2):231–254
  13. Komalawati, Asmarantaka R.W., Nurmalina R. & Hakim D.B. 2021. Volatility and Transmission of Beef Prices in Indonesia: Case Studies in Jakarta, Bandung, Semarang and Surabaya. Bul Ilm Litbang Perdagang. 15(1):127–156. doi: 10.30908/bilp.v15i1.491
  14. Kustiari, R. 2017. Price Behavior and Market Integration of Shallots in Indonesia. J Agro Ekon. 35(2):77–87
  15. Lahiani A, Nguyen D.K. & Vo, T. 2013. Understanding return and volatility spillovers among major agricultural commodities. J Appl Bus Res. 29(6):1781–1790. doi: 10.19030/jabr.v29i6.8214
  16. Laili, F, Widyawati, W. & Prasetyaningrum, D.I. 2022. Experience Shocks of Strategic Food Consumers in Indonesia During Covid-19 Pandemic. Agric Soc Econ J. 22(1):53–58. doi: 10.21776/ub.agrise.2022.022.1.8
  17. Huchet, B. 2011. Agricultural Commodity Price Volatility: An Overview, OECD Food, Agriculture And Fisheries Working Papers. (52). http://dx.doi.org/10.1787/5kg0t00nrthc-en
  18. Marwa, T., Bashir, A., Azwardi & Adam, M., Thamrin KMH. 2017. Market Integration of Agricultural Products. Int J Econ Bus Adm. V Issue 2:69–82. doi: 10.35808/ijeba/130
  19. Ministry of Agriculture. 2020. Outlook for Red Onions. In: Onion Outlook. pp 70
  20. Ministry of Agriculture. 2021. Ministry of Agriculture Strategic Plan 2020-2024 Revised. In: Copy of Ministerial Decree. pp 1-161
  21. Ministry of Trade. 2021. Analysis of the Development of Staple Food Prices in Domestic and International Markets. (30):1–12
  22. Musunuru, N. 2014. Modeling Price Volatility Linkages between Corn and Wheat: A Multivariate GARCH Estimation. Int Adv Econ Res. 20(3):269–280. doi: 10.1007/s11294-014-9477-9
  23. Pardian, P., Noor T.I., & Kusumah, A. 2016. Analisis Penawaran Dan Permintaan Bawang Merah Di Provinsi Jawa Barat. Agricore J Agribisnis dan Sos Ekon Pertan Unpad. 1(2). doi: 10.24198/agricore.v1i2.22711
  24. Pertiwi, V.A., Anindita, R. & Dwiastuti, R. 2013. Analysis of Volatility, Price Transmission and Spillover Volatility of Shallots (Allium ascolanium L) in East Java. Habitat. XXIV(3)
  25. Piot-lepetit, I. 2011. Price Volatility and Price Leadership in the EU Beef and Pork Meat Market. Methods to Anal Agric Commod Price Volatility., siap terbit
  26. Pradana, R.S. 2019. Study of changes and volatility of strategic food commodity prices and their effect on inflation in Banda Aceh City. J Ilmu Ekon dan Pembang. 19(2):85–100
  27. President Regulation. 2015. Determination and Storage of Basic Needs and Essential Goods. In: Presidential Regulation Number 71 of 2015. Volume 13. pp 1-12
  28. Puspitasari, P., Kurniasih D. & Kiloes A.M. 2019. Application of ARCH-GARCH Model in Analyzing the Volatility of Shallot Price. Agricultural Inform. 28(1):21. doi: 10.21082/ip.v28n1.2019.p21-30
  29. Putri, R.H. & Watemin. 2014. As Well As the Estimated Prices of Onion in. Maret. 11(1):65–69
  30. Sahara, Utari M.H. & Azijah, Z. 2019. Price Volatility of Red Onion in Indonesia. Bul Ilm Litbang Perdagang. 13(2):309–336. doi: 10.30908/bilp.v13i2.419
  31. Seleiman, M.F., Selim S., Alhammad, B.A., Alharbi, B.M. & Juliatti, F.C. 2020. Will novel coronavirus (COVID-19) pandemic impact agriculture, food security and animal sectors? Biosci J. 36(4):1315–1326. doi: 10.14393/BJ-v36n4a2020-54560
  32. Sholihah, F. & Kusnadi N. 2019. The Impact of Biofuels Development on Price Volatility of Some Foods Commodities in the World Markets. J Agribisnis Lahan Kering. 37(2):157–170
  33. Sulistiowati, S.E., Anindita R. & Asmara R.. 2021. Market Volatility of Red Onion in Probolinggo District, East Java Province. Agro Ekon. 39(1):15–27
  34. Tiarantika, W.S. 2020. Analysis of Red Onion Price Volatility in Wage Market, Nganjuk Regency. J Sos Ekon …. 8(2):59–68
  35. Trujillo-Barrera, A., Mallory, M. & Garcia P. 2012. Volatility spillovers in U.S. crude oil, ethanol, and corn futures markets. J Agric Resour Econ. 37(2):247–262

Last update:

No citation recorded.

Last update:

No citation recorded.