ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK

Abstract
Poverty is the main problem both at the national and regional development. Existing poverty alleviation programs have not paid attention to the spatial aspect. Thus the policies are often poorly targeted. This study aims to find spatial patterns of poverty in Pandeglang and Lebak districts. Geographically weighted regression (GWR) is used to analyze the poverty data in 2016. Based on the analysis, positive spatial autocorrelation is found and clustered in 25 sub-districts. Net enrollment rates tend to reduce poverty in all sub-districts. Meanwhile, village funds, electricity, and roads tend to reduce poverty rates in more than 80% of sub-districts. Independent variables have a different response in each sub-district. Therefore, the poverty alleviation program of each sub-district is adjusting to its influencing factor.
Keywords: autocorrelation spatial; GWR; poverty; sub-district
Article Metrics:
Article Info
Section: Articles
Others articles
KEBIJAKAN PENGEMBANGAN INDUSTRI BATIK DI KABUPATEN KLATEN, QUO VADIS?
ANALISIS LAHAN KRITIS DAN ARAHAN REHABILITASI LAHAN DALAM PENGEMBANGAN WILAYAH KABUPATEN KENDAL JAWA TENGAH
URGENSI KEBIJAKAN REKLAMASI PANTAI UTARA DKI JAKARTA DAN DAMPAK YANG DITIMBULKAN
PERUBAHAN PENGGUNAAN LAHAN DI KOTA SERANG, PROVINSI BANTEN
Pertimbangan Aspek Sosial Budaya dan Kearifan Lokal dalam Pengembangan Kawasan Danau Tempe Provinsi Sulawesi Selatan
ANALISIS KESESUAIAN LAHAN KOMODITAS UNGGULAN DAN ARAHAN PENGEMBANGANNYA DI WILAYAHKABUPATEN CIANJUR
- Alinsato AS. 2015. Globalization, Poverty and Role of Infrastruture. Journal of Economics and Political Economy.2(1s):197-212
- Ali K, Partridge MD, Olfert MR. 2007. Can Geographically Weighted Regressions Improve Regional Analysis and Policy Making?. International Regional Science Review. 30(3):300-329(July 2007)
- Amara M, Ayadi M. 2013. The Local Geographies of Walfare in Tunisia: Does Neighbourhood Matter?. International Journal of Social Walfare. 22(1):90-103
- Anselin L. 1988. Spatial Econometrics: Method and Models. Kluwer Academic Publisher. Dordrect Boston (US)
- Bappenas. 2008. Buku Panduan Perencanaan dan Penganggaran yang Berpihak pada Masyarakat Miskin. Badan Perencanaan Pembangunan Nasional. Jakarta (ID)
- Badan Pusat Statistik. 2014. Potensi Desa 2014. BPS. Jakarta (ID)
- Badan Pusat Statistik. 2016. Indikator Kesejahteraan Provinsi Banten. Provinsi Banten. BPS. Provinsi Banten (ID)
- Brundson C, Fotheringham S, Charlton M. 1998. Geographically Weighted Regression-Modeling Spatial non-Stationarity. Journal of Royal Statisticacl Society: Series D(The Statistican): 47(3):431-443
- Bici R, Cela M. 2017. Education as An Important Dimension of The Poverty. European Journal of Multidisciplinary Studies.4(3):88-95
- Chen KM, Wang TM. 2015. Determinants of Poverty Status in Taiwan: a Multilevel Approach. Soc Indic Res. 123(2):371-389. Tersedia pada https:// doi.org/10.1007/s11205-014-0741-4 2017 (Oct 10)
- Damania R, Russ J, Wheeler, Barra AF. 2017. The Road to Growth: Measuring the Trade of between Economic Growth and Ecological Destruction. World Development. 1-27. Tersedia pada http://dx.doi.org/10.1016/j.worlddev.2017.06.001
- Dreibelbis R, Green LE, Freeman MC, Saboori S, Chase RP, Rheingans R. 2013. Water, Sanitation, and Primary School Attendance: A Multi-Level Assessment Of Determinants of Household-Reported Absence in Kenya. International Journal of Educational Development. (33):457–465
- Duncan DT, Kawachi I, White K, Williams DR. 2012. The Geography of Recreational Open Space: Influence of Neighborhood Racial Composition and Neighborhood Poverty. Journal of Urban Helath: Bulletin of the Newyork Academy of Medicine. 90(4):618-631
- Edriss AK, Chiunda C. 2017. Interfaces Between Road and Infrastructure and Poverty in Africa: The Case of Malawi, 1994-2013. Journal of Social Economics Research. 4(1):9-21
- Fotheringham A, Brunsdon C, Charlton M. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley&Sons (UK)
- Harmes, Juanda B, Rustiadi E, Barus B. 2017. Pemetaan efek Spasial Pada Data Kemiskinan Kota Bengkulu. Journal of Regional and Rural Development Planning. 1(2):192-201
- Hidalgo HM, Ormaetxe II. 2014. Long-rung effect on poverty of public expenditure in education. Working Paper. AD(2014-06):1-38
- Khan FC. 2013. Heterogenety as Heterodoxy in Development Policy: Tribal Communities in Bangladesh and Kerala. International Journal of Development Issues. 12(1):4-21
- Mai T, Mahadevan R. 2015. A Research Note on The Poverty Dynamics and Cost of Poverty Inequality: Case Study of Indonesia. Economic Analysis and Policy, (49):100-107
- Nashwari IP, Rustiadi E, Siregar H, Juanda B. 2017. Geographicallly Weighted Regression Model for poverty Analysis in Jambi Province. Indonesian Journal of Ggeography. 49(1):42-50
- Pongoh F, Sumartajaya IM, Aidi MN. 2015. Geographical Weighted Regression and Mix Geographical Weighted Regression. International Journal of Statistics and Application.5(1):1-4
- Ranis G, Stewart F. 1994. Decentralisation in Indonesia. Bulletin of Indonesian Economic Studies. 30(3):41-72
- Rodriquez, Pose A. 1998. The Dynamics of Regional Growth in Europe: Social and Political Factors. Oxford Clarendon, New York (US)
- Rofiq A. 2014. Pertumbuhan Ekonomi dan Kemiskinan Kebijakan dan Tantangan Masa Depan. Republika. Jakarta (ID)
- Rustiadi E, Saefulhakim, S, Panuju DR. 2011. Perencanaan dan Pengembangan Wilayah. Crestpent Press dan Yayasan Pustaka Obor Jakarta, Jakarta (ID)
- Sasmal R., Joydeb S. 2016. Public Expenditure, Economic Growth and Poverty Alleviation. International Journal of Social Economics. 43(6):604 - 618
- Saefudin A, Setiabudi NA, Achsani NA. 2011. On comparisson Between Ordinary Linear Regression and Geographically Weighted Regression: with Application to Indonesian Poverty Data. European Journal of Scientific Research. 57(2):275-285
- Saefudin A, Setiabudi NA, Fitrianto A. 2012. On comparisson Between Ordinary Linear Regression and Geographically Weighted Regression: with Application to Indonesian Poverty Data. World Applied Sciences Journal. 19(2):205-210
- Sinaga KP. 2013. Poverty Data Modeling in North Sumatera Province Using Geographically Weighted. International Journal of Science and Research (IJSR). 4(2):1738-1742
- Vasan S, Alcantara A. 2016. GIS-Based Methods for Estimating Mising Poverty Rates & Projecting Future Rates in Census Tracts. Review of Economics & Finance. 6:1-13
- Wahyuni RNT, Damayanti A. 2014. Faktor-faktor yang Menyebabkan Kemiskinan di Provinsi Papua: Analisis Spatial Heterogeneity. Jurnal Ekonomi dan Pembangunan Indonesia. 14(2):128-144
- Yu Y, Zhang L, Li F, Zheng X. 2011. In the Diterminants of Public Infrastructure Spending in Chines Cities: A Spatial Econometric Perpective. The Social Science Journal. 48:458-467
- Yudha EP. 2017. Implementasi Pengelolaan Keuangan Desa dan Pengaruhnya terhadap Kinerja Pembangunan Perdesaan: Studi Kasus Kabupaten Pandeglang-Banten, Sekolah Pascasarjana IPB. Bogor (ID)
- Yusuf AA, Sumner A. 2014. Growth, Poverty and Inequality Under Jokowi. Bulletin of Indonesian Economic Studies. 51(3):323-348
- Zhang H. 2014. The Poverty Trap of Education: Education–Poverty Connections in Western China. International Journal of Educational Development. 38(2014):47-58
Last update: 2021-04-20 05:51:04
No citation recorded.
Last update: 2021-04-20 05:51:05
No citation recorded.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to TATALOKA, Department of Urban and Regional Planning, Faculty of Engineering, Diponegoro University as publisher of the journal.
In consideration for publication of your work, if published on behalf of the TATALOKA, the author agrees to transfer the work to the TATALOKA, including full and exclusive rights to publication in all media now known or later developed, including but not limited to electronic databases.