skip to main content

PREDIKSI PERKEMBANGAN LAHAN PERMUKIMAN TERHADAP KERENTANAN BENCANA BANJIR DAN KEBAKARAN DI PERMUKIMAN TEPIAN SUNGAI KAPUAS KOTA PONTIANAK

*Ely Nurhidayati  -  Jurusan Teknik Arsitektur, Politeknik Negeri Pontianak
Imam Buchori  -  Departemen Perencanaan Wilayah dan Kota, Universitas Diponegoro
Mussadun Mussadun  -  Departemen Perencanaan Wilayah dan Kota, Universitas Diponegoro

Citation Format:
Abstract

Settlements of house on stilts in the Eastern Pontianak is located at the triangle of the Kapuas River and Landak River. This study to determine the changes of settlement’s areas in 2003-2014, predict the settlement’s areas in 2020 and the correlation between the disaster vulnerability and the development of settlement’s areas in the Kapuas riverbanks. This research method integrates quantitative-SIG binary logistic regression and CA-Markov. The data used are Quickbird satellite imagery (2003), elevation data ICONOS (2008) and contour intervals (1 meter). The results are the prediction accuracy (79.74%) and the highest kappa index (0.55). The prediction of settlement’s areas (481.98 hectares) in 2020, shows the highest land expansion in the Parit Mayor Village and the increase of settlement’s areas (6.80 ha/year) in 2014-2020. Regression analysis have a coefficient of 0 in the flooding variable, so the floods did not affected the development of settlement’s areas in the Eastern Pontianak.

Fulltext View|Download
Keywords: prediction; settlement’s areas; disaster vulnerability; house on stilts.

Article Metrics:

  1. Anunobi, A.I., (2014). Informal Riverine Settlements and Flood Risk Management : A Study of Lokoja, Nigeria, 4(12), (pp. 35-43)
  2. Bash, E., (2009). Urban Risk Reduction: An Asian Perspective, Bingley BD16 1WA, UK
  3. Chander, Gyanesh and Markham, Brian. (2003). Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Transaction on Geoscience and Remote Sensing, Vol. 41, #11, November 2003, (pp. 2674-2677)
  4. Danoedoro, Projo. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta: Penerbit Andi
  5. Hasanuddin. (2015). Pontianak Masa Kolonial. Yogyakarta: Ombak
  6. Hegde N.P., (2008). Settlement Growth Prediction Using Neural. Journal of theoritical and applied information technology
  7. IPCC. (2007). Mitigation of climate change: Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change
  8. Jabareen, Y., (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities, 31, pp.220–229. Available at: http://dx.doi.org/10.1016/j.cities.2012.05.004
  9. Jaroslaw, J. & Hildebrandt-Radke, I., (2009). Using multivariate statistics and fuzzy logic system to analyse settlement preferences in lowland areas of the temperate zone: an example from the Polish Lowlands. Journal of Archaeological Science, 36(10), (pp. 2096–2107)
  10. Laukkonen, J. et al., (2009). Combining climate change adaptation and mitigation measures at the local level. Habitat International, 33(3), pp.287–292. Available at: http://dx.doi.org/10.1016/j.habitatint.2008.10.003
  11. Maria de Almeida, C. & Marinaldo Gleriani, J., (2005). Cellular automata and neural networks as a modelling framework for the simulation of urban land use change c. Anais XII Simposio Brasileiro de Sensoriamento Remoto, Goiania, Brasil, (pp. 3697–3705)
  12. Mentayani, I., Hadinata, I.Y. & Prayitno, B., (2013). Karakteristik dan Formasi Keruanga Kota-Kota Berbasis Perairan di Indonesia. Lanting Journal of Architecture, 2(Nomor 2), pp.71–82
  13. Nema, P., Nema, S. & Roy, P., (2012). An overview of global climate changing in current scenario and mitigation action. Renewable and Sustainable Energy Reviews, 16(4), pp.2329–2336. Available at: http://dx.doi.org/10.1016/j.rser.2012.01.044
  14. Nwilo, P.C., Olayinka, D.N. & Adzandeh, A.E., (2012). Flood Modelling and Vulnerability Assessment of Settlements in the Adamawa State Floodplain Using GIS and Cellular Framework Approach. Global Journal of Human Social Science, 12(3), (pp. 11–20)
  15. Rustiadi, Ernan et al. (2009). Perencanaan dan Pengembangan Wilayah. Jakarta: Yayasan Obor Indonesia
  16. Sales, R.F.M., (2009). Vulnerability and adaptation of coastal communities to climate variability and sea-level rise: Their implications for integrated coastal management in Cavite City, Philippines. Ocean & Coastal Management, 52(7), pp.395–404. Available at: http://www.sciencedirect.com/science/article/pii/S0964569109000246
  17. Syahar, Fitriana. (2012). Pengaruh Faktor Artifisial terhadap Perkembangan Kota. Jurnal Skala Vol.2, No.4, April 2012, (pp. 49-63)
  18. USGS. (2015). Landsat 8 (L8) Data Users Handbook
  19. Watson, D. & Adams, M.,. (2011). Design For Flooding, Architecture, Landscape, and Urban Design for Resilience to Flooding and Climate Change, Canada: John Wiley & Sons Inc
  20. Wijaya, Muhammad Sufwandika., Susilo, Bowo. (2013). Integrasi Model Spasial Cellular Automata Dan Regresi Logistik Biner Untuk Pemodelan Dinamika Perkembangan Lahan Terbangun (Studi Kasus Kota Salatiga). Jurnal Bumi Indonesia Volume 2, Nomor 1, Tahun 2013
  21. Wu, F. (1998). “An experiment on the generic polycentricity of urban growth in a cellular automatic city”. Environment and Planning B-Planning & Design 25(5), (pp. 731-752)
  22. Yunus, Hadi Sabari. (2010). Metodologi Penelitian Wilayah Kontemporer. Yogyakarta: Pustaka Pelajar

Last update:

No citation recorded.

Last update:

No citation recorded.