skip to main content

The Potential of Biostimulants to Enhance the Growth of Kappaphycus alvarezii (Rhodophyta) Propagules

1Study Program of Aquaculture Technology, Jakarta Technical University of Fisheries, jl. AUP No. 1, Pasar Minggu, Jakarta, Indonesia, Indonesia

2Study Program of Fish Culture, Pangandaran Marine and Fisheries Polytechnic,Pangandaran, West Java, Indonesia

Open Access Copyright 2024 Siti Fadilah

Citation Format:
Abstract

Kappaphycus alvarezii is a globally significant tropical red seaweed renowned for its carrageenan content. While tissue culture is a valuable technique for enhancing seedling quality and stress resilience in vegetative propagation, it is time-consuming and costly. Biostimulants have demonstrated the potential to enhance plant growth. This study aimed to evaluate the potential of biostimulants in enhancing the growth of K. alvarezii propagules. Three different biostimulant products were tested: biostimulant A (amino acid-based), biostimulant B (bacteria-based), and biostimulant C (seaweed extract-based). Each biostimulant was applied at two different concentrations and compared to a negative control and a positive control. Artificial seawater enriched with PES and supplemented with biostimulants according to the treatment was used as the growth medium. Growth of K. alvarezii propagules was monitored weekly, with the primary parameters being propagule weight and specific growth rate. Growth medium quality was assessed by in situ pH measurements and ex situ nitrate and phosphate analyses. Fermented biostimulants negatively impacted growth by reducing the pH of the culture medium, while biostimulant B (photosynthetic bacteria) maintained a near-neutral pH and showed the most promising results, with treatment B2 displaying stable growth and treatment B1 achieving the highest specific growth rate at week 6. Though treatments A1 and A2 showed higher nitrate and phosphate concentrations, these did not correlate with improved growth, likely due to the low pH. While these findings suggest the potential of photosynthetic bacteria for K. alvarezii growth, further research is necessary to fully understand the underlying mechanisms and to develop strategies to overcome the limitations associated with the acidic nature of fermented biostimulants.

Fulltext View|Download
Funding: Pusat Pendidikan, BPPSDMKP, Kementerian Kelautan dan Perikanan

Article Metrics:

  1. Abdelkader, M., Voronina, L., Baratova, L., Shelepova, O., Zargar, M., Puchkov, M., Loktionova, E., Amantayev, B., Kipshakbaeva, A., Arinov, B., 2023. Biostimulants-Based Amino Acids Augment Physio-Biochemical Responses and Promote Salinity Tolerance of Lettuce Plants (Lactuca sativa L.). Horticulturae 9. https://doi.org/10.3390/horticulturae9070807
  2. Atfaoui, K., Ettouil, A., Fadil, M., Asmaa, O., Inekach, S., Zarrouk, A., 2021. Controlled fermentation of food industrial wastes to develop a bioorganic fertilizer by using experimental design methodology. J. Saudi Soc. Agric. Sci. 1–9. https://doi.org/10.1016/j.jssas.2021.06.003
  3. Cheah, Y., Vidal-antich, C., Dosta, J., Mata-Alvarez, J., 2019. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ. Sci. Pollut. Res. https://doi.org/https://doi.org/10.1007/s11356-019-05394-6
  4. Cheng, J., Su, P., Zhang, Z., Zheng, L., Wang, Z., Hamid, M.R., Dai, J., Du, X., Chen, L., Zhai, Y., Kong, X., Liu, Y., Id, D.Z., 2022. Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods. PLoS 17, 1–19. https://doi.org/10.1371/journal.pone.0262517
  5. du Jardin, P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. (Amsterdam). 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  6. Hamouda, M.M., Saad-Allah, K.M., Gad, D., 2022. Potential of Seaweed Extract on Growth, Physiological, Cytological and Biochemical Parameters of Wheat (Triticum aestivum L.) Seedlings. J. Soil Sci. Plant Nutr. 22, 1818–1831. https://doi.org/10.1007/s42729-022-00774-3
  7. Harman, G., Khadka, R., Doni, F., Uphoff, N., 2021. Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts. Front. Plant Sci. 11, 1–21. https://doi.org/10.3389/fpls.2020.610065
  8. Hurtado, A.Q., Neish, I.C., Critchley, A.T., 2015. Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J. Appl. Phycol. 27, 1945–1961. https://doi.org/10.1007/s10811-014-0510-4
  9. Kergosien, N., Stiger-Pouvreau, V., Connan, S., Hennequart, F., Brébion, J., 2023. Mini-Review: brown macroalgae as a promising raw material to produce biostimulants for the agriculture sector. Front. Agron. 5. https://doi.org/10.3389/fagro.2023.1109989
  10. Lee, S., Lur, H., Liu, C., 2021. From Lab to Farm : Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms 9, 1–23. https://doi.org/doi.org/10.3390/ microorganisms9122453
  11. Li, B., Zhao, L., Liu, D., Zhang, Y., Wang, W., Miao, Y., Han, L., 2023. Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community. Plants 12, 1–16. https://doi.org/10.3390/plants12020298
  12. Luhan, M.R.J., Mateo, J.P., 2017. Clonal production of Kappaphycus alvarezii (Doty) Doty in vitro. J. Appl. Phycol. 29, 2339–2344. https://doi.org/10.1007/s10811-017-1105-7
  13. Majda, M., Robert, S., 2018. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 19, 1–21. https://doi.org/10.3390/ijms19040951
  14. Maradhy, E., Nazriel, R.S., Sutjahjo, S.H., Rusli, M.S., Widiatmaka, W., Sondita, M.F.A., 2022. Evaluation of Water Suitability for Sustainable Seaweed (Kappaphycus Alvarezii) Cultivation to Support Science Technopark in North Kalimantan. J. Pengelolaan Sumberd. Alam Dan Lingkung. (Journal Nat. Resour. Environ. Manag. 11, 490–503. https://doi.org/10.29244/jpsl.11.3.490-503
  15. Mo, V.T., Cuong, L.K., Tung, H.T., Van Huynh, T., Nghia, L.T., Khanh, C.M., Lam, N.N., Nhut, D.T., 2020. Somatic embryogenesis and plantlet regeneration from the seaweed Kappaphycus striatus. Acta Physiol. Plant. 42, 1–11. https://doi.org/10.1007/s11738-020-03102-3
  16. Mukti, A.W., Ujang, K.A.K., 2019. Scalling Up Bibit Rumput Laut, Kappaphycus alvarezii dengan Kultur Jaringan. J. Sains Teknol. Akuakultur 3, 1–9
  17. Navarro, N.P., Huovinen, P., Gómez, I., 2016. Stress tolerance of Antarctic macroalgae in the early life stages. Rev. Chil. Hist. Nat. 89, 1–9. https://doi.org/10.1186/s40693-016-0051-0
  18. Prasedya, E.S., Sofian, N., Kurniawan, H., Alibiah, I., Kirana, P., Ardiana, N., 2022. Seaweed Fertilizer Prepared by EM-Fermentation Increases Abundance of Beneficial Soil Microbiome in Paddy (Oryza sativa L .) during Vegetative Stage. Fermentation 8, 1–15. https://doi.org/https://doi.org/10.3390/ fermentation8020046
  19. Rajpoot, M., Topno, S.E., 2023. Effect of Photosynthetic Bacteria , Vermiwash and Phosphorus Solubilizing Bacteria on Growth , Yield and Quality of French Bean ( Phaseolus vulgaris L .). J. Agric. Ecol. Res. Int. 24, 104–110. https://doi.org/10.9734/JAERI/2023/v24i5547
  20. Rupert, R., Rodrigues, K.F., Thien, V.Y., Yong, W.T.L., 2022. Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Front. Plant Sci. 13, 1–16. https://doi.org/10.3389/fpls.2022.859635
  21. Su, P., Tan, X., Li, C., Zhang, D., Cheng, J., Zhang, S., Zhou, X., Yan, Q., Peng, J., Zhang, Z., Liu, Y., Lu, X., 2017. Photosynthetic bacterium Rhodopseudomonas palustris GJ‐22 induces systemic resistance.pdf. Microb. Biotechnol. 10, 612–624. https://doi.org/doi: 10.1111/1751-7915.12704
  22. Sugumaran, R., Padam, B.S., Yong, W.T.L., Saallah, S., Ahmed, K., Yusof, N.A., 2022. A Retrospective Review of Global Commercial Seaweed Production—Current Challenges, Biosecurity and Mitigation Measures and Prospects. Int. J. Environ. Res. Public Health 19, 1–31. https://doi.org/10.3390/ijerph19127087
  23. Sulistiani, E., Yani, S.A., 2014. Kultur jaringan rumput laut Kotoni (Kappaphycus alvarezii). Seameo Biotrop, Bogor
  24. Suryati, E., Rosmiati, R., Parenrengi, A., Tenriulo, A., 2015. In vitro growth rate of Kappaphycus alvarezii micropropagule anad embryo by enrichment medium with seaweed extract. Indones. Aquac. J. 10, 13–17. https://doi.org/10.15578/iaj.10.1.2015.13-17
  25. Tahiluddin, A.B., Irin, S.S.H., Jumadil, K.S., Muddihil, R.S., Terzi, E., 2022. Use of Brown Seaweed Extracts as Bio-fertilizers and their Effects on the Ice-ice Disease Occurrence, Carrageenan Yield, and Growth Rate of the Red Seaweed Kappaphycus striatus. Yuz. Yil Univ. J. Agric. Sci. 32, 436–447. https://doi.org/10.29133/yyutbd.1071446
  26. Taya, K., Takeuchi, S., Takahashi, M., Hayashi, K.I., Mikami, K., 2022. Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis. Cells 11, 1–16. https://doi.org/10.3390/cells11172652
  27. Wu, Y., Ma, L., Liu, Q., Sikder, M., Vestergård, M., Zhou, K., Wang, Q., Yang, X., Feng, Y., 2020. Pseudomonas fluorescens promote photosynthesis , carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci. Total Environ. 726, 1–10. https://doi.org/10.1016/j.scitotenv.2020.138554
  28. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H., 2017. Biostimulants in plant science: A global perspective. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.02049

Last update:

No citation recorded.

Last update:

No citation recorded.